Answer with Explanation:
We are given that
Mass of deuteron=[tex]2m_p[/tex]
Charge, Q=e
Mass of alpha particle=[tex]4m_p[/tex]
Charge,q=2e
Magnetic field=B
Mass of proton=[tex]m_p[/tex]
Let radius of path of proton=r
[tex]v=\sqrt{\frac{2qV}{m}}[/tex]
Using the formula
Velocity of proton=[tex]v=\sqrt{\frac{2qV}{m}}[/tex]
Centripetal force =Magnetic force
[tex]\frac{mv^2}{r}=qvB[/tex]
[tex]r=\frac{mv}{qB}[/tex]
Radius of proton,[tex]r=\frac{m_p\times\sqrt{\frac{2eV}{m_p}}}{eB}=\frac{\sqrt{2V}}{B}\sqrt{\frac{m_p}{e}}[/tex]
Radius of deuteron,[tex]R=\frac{\sqrt{2V}}{B}\times \sqrt{\frac{2m_p}{e}}[/tex]
[tex]\frac{R}{r}=\sqrt{2}[/tex]
[tex]R=\sqrt{2}r[/tex]
Radius of alpha particle,[tex]R'=\frac{\sqrt{2V}}{B}\times\sqrt{\frac{4m_p}{2e}}[/tex]
[tex]\frac{R'}{r}=\sqrt 2[/tex]
[tex]R'=\sqrt{2} r[/tex]