The volume of a cone is 113.04 mm2. What is the approximate volume of a sphere that has the same height and a circular base with the same diameter? Use 3.14 for π and round to the nearest hundredth.

Respuesta :

Answer:

[tex]V=169.56\ mm^3[/tex]

Step-by-step explanation:

we know that

The volume of the cone is given by te formula

[tex]V=\frac{1}{3}\pi r^{2}h[/tex]

we have

[tex]V=113.04\ mm^3[/tex]

substitute

[tex]113.04=\frac{1}{3}\pi r^{2}h[/tex]

[tex]339.12=\pi r^{2}h[/tex] ----> equation A

Remember that

A sphere has the same height and a circular base with the same diameter

That means----> The diameter of the sphere is equal to the height of the cone and the radius of the sphere is equal to the radius of the base of cone

[tex]r=\frac{h}{2}[/tex]

equation A is equal to

[tex]339.12=\pi (\frac{h}{2})^{2}h[/tex]

[tex]339.12=\pi (\frac{h^3}{3})[/tex]

[tex]1,017.36=\pi h^3[/tex] -----> equation B

The volume of the sphere is given by

[tex]V=\frac{4}{3}\pi r^{3}[/tex]

substitute

[tex]V=\frac{4}{3}\pi (\frac{h}{2})^{3}[/tex]

[tex]V=\frac{4}{24}\pi h^3[/tex]

[tex]V=\frac{1}{6}\pi h^3[/tex]

substitute equation B in the expression above

[tex]V=\frac{1}{6}(1,017.36)=169.56\ mm^3[/tex]