Packaging By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, an open box may be made. If the cardboard is 21 in. long and 5 in. wide, find the dimensions (in inches) of the box that will yield the maximum volume. (Round your answers to two decimal places if necessary.)

Respuesta :

Answer:

The dimension of the box is 18.66 in by 2.66 in by 1.17 in.

Step-by-step explanation:

Given that, The cardboard is 21 in. long and 5 in. wide.

Assume,x be the length of the each sides of the square .

Then the length of the box is = (21-2x) in.

The breadth of the box is =(5-2x) in.

The height of the box is  = length of side of the square

                                         = x in.

The volume of the box = length × wide × height

                                      =(21-2x)(5-2x)x

                                      =(105-52x+4x²)x

                                      =([tex]105 x-52x^2+4x^3[/tex])

Let

V=[tex]105 x-52x^2+4x^3[/tex]

Differentiating with respect to x

[tex]V'=105-104x+12x^2[/tex]

Again differentiating with respect to x

[tex]V''=-104+24x[/tex]

To find the dimension of the box, we set V'=0

[tex]105-104x+12x^2=0[/tex]

Applying the quadratic formula [tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex] , here a=12, b= -104 and c =105

[tex]\Rightarrow x=\frac{-(-104)\pm\sqrt{(-104)^2-4.12.105}}{2.12}[/tex]

      [tex]=\frac{104\pm 76}{24}[/tex]

      =7.5, 1.17

For x= 7.5 , the wide of the box will be negative.

∴x=1.17 in.

[tex]V''_{x=1.17}=-104+(24\times 1.17)<0[/tex]

Since at x= 1.17, V''<0 , therefore at x=1.17 in. the volume of the given box will be maximum.

The length of the box is = [21-(1.17×2)]=18.66 in.

The wide of the box is = [5-(1.17×2)]=2.66 in.

The height of the box is = 1.17 in.

The dimension of the box is 18.66 in by 2.66 in by 1.17 in.

The volume of a box is the amount of space in the box.

The dimensions that yield the maximum volume are: 18.60 by 2.60 by 1.20 inches

The dimension of the cardboard is:

[tex]\mathbf{Length = 21}[/tex]

[tex]\mathbf{Width = 5}[/tex]

Assume the cut-out is x.

So, the dimension of the box becomes

[tex]\mathbf{Length = 21 -2x}[/tex]

[tex]\mathbf{Width = 5 -2x}[/tex]

[tex]\mathbf{Height = x}[/tex]

The volume of the box is:

[tex]\mathbf{V = (21 - 2x) \times (5 - 2x) \times x}[/tex]

Open brackets

[tex]\mathbf{V = (21 - 2x) \times (5x - 2x^2)}[/tex]

Expand

[tex]\mathbf{V = 105x - 42x^2 -10x^2 + 4x^3}[/tex]

[tex]\mathbf{V = 105x -52x^2 + 4x^3}[/tex]

Differentiate

[tex]\mathbf{V' = 105 - 104x + 12x^2}[/tex]

Set to 0

[tex]\mathbf{105 - 104x + 12x^2 = 0}[/tex]

Rewrite as:

[tex]\mathbf{12x^2- 104x +105 = 0}[/tex]

Using a calculator, the value of x is:

[tex]\mathbf{x = (7.50, 1.20)}[/tex]

When x = 7.50;

[tex]\mathbf{Length = 21 -2(7.50) = 6}[/tex]

[tex]\mathbf{Width = 5 -2(7.50) = -10}[/tex]

[tex]\mathbf{Height = 7.50}[/tex]

The width cannot be negative.

When x = 1.20;

[tex]\mathbf{Length = 21 -2(1.20) = 18.60}[/tex]

[tex]\mathbf{Width = 5 -2(1.20) = 2.60}[/tex]

[tex]\mathbf{Height = 1.20}[/tex]

So, the dimensions that yield the maximum volume are: 18.60 by 2.60 by 1.20 inches

Read more about volumes at:

https://brainly.com/question/13529955