Answer:
2.45 m
Explanation:
We are given that
[tex]m_1=130 kg[/tex]
[tex]m_2=72 kg[/tex]
Height,h=0.75 m
Initial velocity,[tex]u_1=u_2=0[/tex]
We have to find the height above his own starting point Ed rises.
Initial kinetic energy of Ed=Final potential energy of Ed
[tex]m_2gh'=\frac{1}{2}m_2v^2_2[/tex]
[tex]h'=\frac{v^2_2}{2g}[/tex]
According to law of conservation of momentum
[tex]0=m_1v_1+m_2v_2[/tex]
[tex]v_2=-\frac{m_1v_1}{m_2}[/tex]
[tex]h'=\frac{m^2_1v^2_1}{2gm^2_2}[/tex]
Initial kinetic energy of adolf=Final potential energy of adolf
[tex]\frac{1}{2}m_1v^2_1=m_1gh[/tex]
[tex]v_1=\sqrt{2gh}[/tex]
Substitute the values
[tex]h'=\frac{(130)^2(\sqrt{2\times 9.8\times 0.75})^2}{(72)^2\times 2\times 9.8}[/tex]
[tex]h'=2.45 m[/tex]