Suppose a simple random sample of size nequals81 is obtained from a population with mu equals 79 and sigma equals 18. ​(a) Describe the sampling distribution of x overbar. ​(b) What is Upper P (x overbar greater than 81.2 )​? ​(c) What is Upper P (x overbar less than or equals 74.4 )​? ​(d) What is Upper P (77.6 less than x overbar less than 83.2 )​?

Respuesta :

Answer:

(a) The sampling distribution of[tex]\overline{X}[/tex] = Population mean = 79

(b)  P ( [tex]\overline{X}[/tex] greater than 81.2 ) =  0.1357

(c) P ([tex]\overline{X}[/tex] less than or equals 74.4 ) = .0107

(d) P (77.6 less than [tex]\overline{X}[/tex] less than 83.2 ) = .7401

Step-by-step explanation:

Given -

Sample size ( n ) = 81

Population mean [tex](\nu)[/tex] = 79

Standard deviation [tex](\sigma )[/tex] = 18

​(a) Describe the sampling distribution of [tex]\overline{X}[/tex]

For large sample using central limit theorem

the sampling distribution of[tex]\overline{X}[/tex] = Population mean = 79

​(b) What is Upper P ( [tex]\overline{X}[/tex] greater than 81.2 )​ =

[tex]P(\overline{X}> 81.2)[/tex]  = [tex]P(\frac{\overline{X} - \nu }{\frac{\sigma }{\sqrt{n}}}> \frac{81.2 - 79}{\frac{18}{\sqrt{81}}})[/tex]

                    =  [tex]P(Z> 1.1)[/tex]

                    = [tex]1 - P(Z< 1.1)[/tex]

                    = 1 - .8643 =

                    = 0.1357

(c) What is Upper P ([tex]\overline{X}[/tex] less than or equals 74.4 ) =

[tex]P(\overline{X}\leq 74.4)[/tex] = [tex]P(\frac{\overline{X} - \nu }{\frac{\sigma }{\sqrt{n}}}\leq \frac{74.4- 79}{\frac{18}{\sqrt{81}}})[/tex]

                    = [tex]P(Z\leq -2.3)[/tex]

                    = .0107

​(d) What is Upper P (77.6 less than [tex]\overline{X}[/tex] less than 83.2 ) =

[tex]P(77.6< \overline{X}< 83.2)[/tex] = [tex]P(\frac{77.6- 79}{\frac{18}{\sqrt{81}}})< P(\frac{\overline{X} - \nu }{\frac{\sigma }{\sqrt{n}}}\leq \frac{83.2- 79}{\frac{18}{\sqrt{81}}})[/tex]

                                = [tex]P(- 0.7< Z< 2.1)[/tex]

                                 = [tex](Z< 2.1) - (Z< -0.7)[/tex]

                                  = 0.9821 - .2420

                                   = 0.7401