Each of two computers randomly generate a number between 2 and 7​, then finds the sum of the two values. Using the sample space provided below and assuming each simple event is as likely as any​other, find the probability that the sum is divisible by 4 .

Respuesta :

Answer:

0.25

Step-by-step explanation:

Since each of the computer generates a number between 2 and 7, the sample space is given below:

[tex]\left|\begin{array}{c|ccccccc}--&--&--&--&--&--&--\\ &2&3&4&5&6&7\\--&--&--&--&--&--&--\\2&2,2&(2,3)&(2,4)&(2,5)&2,6&(2,7)\\3&(3,2)&(3,3)&(3,4)&3,5&(3,6)&(3,7)\\4&(4,2)&(4,3)&4,4&(4,5)&(4,6)&(4,7)\\5&(5,2)&5,3&(5,4)&(5,5)&(5,6)&(5,7)\\6&6,2&(6,3)&(6,4)&(6,5)&(6,6)&(6,7)\\7&(7,2)&(7,3)&(7,4)&7,5&(7,6)&(7,7)\\--&--&--&--&--&--&--\end{array}\right|[/tex]

The total Sample space, n(S)=36

The pair which adds up to a multiple of 4 are those not enclosed by brackets on the table.

Number of Pairs that whose sum is divisible by 4=9

Probability that the sum is divisible by 9[tex]=\frac{9}{36}=\frac{1}{4}=0.25[/tex]