Respuesta :

Given:

QW = 12 and WS = 4x + 1

PW = 14 and WR = 3x + 3

To find:

The length of the chord QS.

Solution:

If two chords intersect inside a circle, then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord.

[tex]\Rightarrow QW \cdot WS= PW\cdot WR[/tex]

[tex]\Rightarrow 12 \cdot (4x+1)=14 \cdot (3x+3)[/tex]

[tex]\Rightarrow 48x+12= 42x+42[/tex]

Subtract 12 from both sides.

[tex]\Rightarrow 48x+12-12= 42x+42-12[/tex]

[tex]\Rightarrow 48x= 42x+30[/tex]

Subtract 42x from both sides.

[tex]\Rightarrow 48x-42x= 42x+30-42x[/tex]

[tex]\Rightarrow 6x= 30[/tex]

Divide by 6 on both sides, we get

x = 5

QS = QW + WS

      [tex]=12+4x+1[/tex]

      [tex]=12+4(5)+1[/tex]

      [tex]=13+20[/tex]

      = 43

The length of QS is 43.