An ideal Brayton cycle has inlet air at 300 K, 100 kPa and the combustion process adds 800 kJ/kg. The maximum temperature is 1400 K due to material considerations. Using standard-air properties, find the maximum permissible compression ratio (pressure ratio across the compressor) and the cycle efficiency. The Cv and R of the air is 716 J/kg-K and 287 J/kg-K.

Respuesta :

Answer:

the maximum permissible compression ratio (pressure ratio across the compressor) r = 11.525 and the cycle efficiency (η) = 0.5

Explanation:

[tex]T_1 =300K\\ P_1=100kPa\\T_3=1400K\\q=800kJ/kq[/tex]

adiabatic exponent k = 1.4 and air specific heat [tex]C_p= 1.004kJ/kgK[/tex]

The specific heat transfer q is given by the equation:

[tex]q=C_p(T_3-T_2)\\T_2=T_3-\frac{q}{C_p}[/tex]

Substituting values:

[tex]T_2=T_3-\frac{q}{C_p}= 1400-\frac{800}{1.004}= 603.18K[/tex]

the maximum permissible compression ratio (pressure ratio across the compressor) r is given by:

[tex]r = (\frac{T_2}{T_1} )^\frac{k}{k-1}[/tex]

Substituting values:

[tex]r = (\frac{T_2}{T_1} )^\frac{k}{k-1} = (\frac{603.18}{300} )^\frac{1.4}{1.4-1}= 11.525[/tex]

r = 11.525

Exhaust temperature ([tex]T_4[/tex]) = [tex]T_3(r^\frac{1-k}{k})[/tex]

[tex]T_4=T_3(r^\frac{1-k}{k})=1400(11.525^\frac{1-1.4}{1.4}) =696.3K[/tex]

the cycle efficiency (η) = [tex]\frac{C_p(T_3-T_4)}{q} - \frac{C_p(T_2-T_1)}{q}[/tex]

η = [tex]\frac{C_p(T_3-T_4)}{q} - \frac{C_p(T_2-T_1)}{q}= \frac{1.004(1400-696.3)}{800} - \frac{10004(603.18-300)}{800}=0.5[/tex]