contestada

A rocket in deep space has an empty mass of 150 kg and exhausts the hot gases of burned fuel at 2500 m/s. It is loaded with 600 kg of fuel, which it burns in 30 s. What is the rocket’s speed 10 s, 20 s, and 30 s after launch?

Respuesta :

Answer:

[tex]v(10\,s) \approx 775.387\,\frac{m}{s}[/tex]

[tex]v(20\,s)\approx 1905.350\,\frac{m}{s}[/tex]

[tex]v(30\,s) \approx 4023.595\,\frac{m}{s}[/tex]

Explanation:

The speed of the rocket is given the Tsiolkovsky's differential equation, whose solution is:

[tex]v (t) = v_{o} - v_{ex}\cdot \ln \frac{m}{m_{o}}[/tex]

Where:

[tex]v_{o}[/tex] - Initial speed of the rocket, in m/s.

[tex]v_{ex}[/tex] - Exhaust gas speed, in m/s.

[tex]m_{o}[/tex] - Initial total mass of the rocket, in kg.

[tex]m[/tex] - Current total mass of the rocket, in kg.

Let assume that fuel is burned linearly. So that,

[tex]m(t) = m_{o} + r\cdot t[/tex]

The initial total mass of the rocket is:

[tex]m_{o} = 750\,kg[/tex]

The fuel consumption rate is:

[tex]r = -\frac{600\,kg}{30\,s}[/tex]

[tex]r = -20\,\frac{kg}{s}[/tex]

The function for the current total mass of the rocket is:

[tex]m(t) = 750\,kg - (20\,\frac{kg}{s} )\cdot t[/tex]

The speed function of the rocket is:

[tex]v(t) = - 2500\,\frac{m}{s}\cdot \ln \frac{750\,kg -(20\,\frac{kg}{s} )\cdot t}{750\,kg}[/tex]

The speed of the rocket at given instants are:

[tex]v(10\,s) \approx 775.387\,\frac{m}{s}[/tex]

[tex]v(20\,s)\approx 1905.350\,\frac{m}{s}[/tex]

[tex]v(30\,s) \approx 4023.595\,\frac{m}{s}[/tex]