A tank contains 9,000 L of brine with 16 kg of dissolved salt. Pure water enters the tank at a rate of 90 L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. (a) How much salt is in the tank after t minutes

Respuesta :

Answer:

[tex]16e^{-\frac{t}{100}}[/tex]kg

Step-by-step explanation:

We are given that

Volume,V=9000 L

[tex]\frac{dV}{dt}=90L/min[/tex]

We have to find the salt in the tank after t minutes.

Let  y(t) be the amount of salt dissolved in the tank

y(0)=16

[tex]\frac{dy}{dt}=[/tex]rate in-rate out

Rate in=0

Rate out=[tex]\frac{y}{9000}\times \frac{dV}{dt}=\frac{y(t)}{9000}\times 90=\frac{y}{100}[/tex]

[tex]\frac{dy}{dt}=0-\frac{y}{100}[/tex]

[tex]\int dy=-\int \frac{y}{100}dt[/tex]

[tex]\int \frac{dy}{y}=-\int\frac{1}{100}dt[/tex]

[tex]ln y=-\frac{t}{100}+C[/tex]

[tex]y=e^{-\frac{t}{100}+C}=e^{-\frac{t}{100}}\cdot e^C=Ke^{-\frac{t}{100}}[/tex]

Where [tex]k=e^{C}[/tex]

Substitute t=0 and y=16

[tex]16=C[/tex]

[tex]y(t)=16e^{-\frac{t}{100}}[/tex]kg

The required time is [tex]y(t)=16e^{-\frac{t}{100}[/tex]

Differential calculus:

Differential calculus deals with the rate of change of one quantity with respect to another.

Let [tex]y(t)[/tex] be the amount of salt in the tank then we get,

[tex]y(0)=16[/tex]

[tex]\frac{dy}{dt} =Rate\ in\ -\ Rate\ out[/tex]

Since pure water enters the tank the rate of in is zero and the rate of out is,

[tex]\frac{y(t)}{9000} \times \frac{90l}{min}=\frac{y(t)}{100} l/min[/tex]

So, we have,

[tex]\frac{dy}{dt}=-\frac{y}{100}\\ \frac{dy}{y}=-\frac{1}{100} dt[/tex]

Integrating both sides we get,

[tex]ln y=-\frac{t}{100}+c\\ y=Ae^{-\frac{t}{100} }[/tex]

Using the initial condition [tex]y(0)=16, A=16[/tex] then,

[tex]y(t)=16e^{-\frac{t}{100}[/tex]

Learn more about the topic Differential calculus:

https://brainly.com/question/15648128