A galvanic cell based on these half-reactions is set up under standard conditions where each solutions is 1.00 L and each electrode weighs exactly 100.0 g. How much will the Cd electrode weigh when the non-standard potential of the cell is 0.03305 V?

Respuesta :

Complete Question

    [tex]Fe^{2+} + 2e^-----> Fe \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ E^0_{red} = - 0.441 V[/tex]

   

    [tex]Cd^{2+} + 2e^- -----> Cd \ \ \ \ \ \ \ \ \ \ \ \ \ \ E^0_{red} = -0.403V[/tex]

A galvanic cell based on these half-reactions is set up under standard conditions where each solutions is 1.00 L and each electrode weighs exactly 100.0 g. How much will the Cd electrode weigh when the non-standard potential of the cell is 0.03305 V?

Answer:

The mass is M= 117.37g

Explanation:

The overall reaction  is as follows

             [tex]Cd^{2+} + Fe <========> Fe^{2+} + Cd[/tex]

The reaction is this way because the potential  of [tex]Cd^{2+} \ reducing \ to \ Cd[/tex] is higher than the potential  of [tex]Fe^{2+} \ reducing \ to \ Fe[/tex] so the the Fe would be oxidized and [tex]Cd^{2+}[/tex] would be reduced

  At equilibrium the rate constant of the reaction is

                [tex]Q = \frac{concentration \ of \ product }{concentration \ of reactant }[/tex]

                      [tex]= \frac{[Fe^{2+}[Cd]]}{[Cd^{2+}][Fe]}[/tex]

The Voltage of the cell [tex]E_{cell} = E_{Cd^{2+}/Cd } + E_{Fe^{2+} /Fe}[/tex]

     Substituting the given values into the equation

                         [tex]E_{cell} = -0.403 -(-0.441)[/tex]

                                 [tex]= 0.038V[/tex]

The voltage of the cell at any point can be calculated using the equation

               [tex]E = E_{cell} - \frac{0.059}{n_e} Q[/tex]

Where [tex]n_e \ is \ the \ number\ of\ electron[/tex]

Substituting for Q

           [tex]E = E_{cell} - \frac{0.059}{n_e} \frac{[Fe^{2+}[Cd]]}{[Cd^{2+}][Fe]}[/tex]

 When E = 0.03305 V

            [tex]E = E_{cell} - \frac{0.59}{n_e} \frac{Fe^{2+}}{Cd^{2+}}[/tex]

Since we are considering the Cd electrode the equation becomes

            [tex]E= E_{cell} - \frac{0.059}{n_e} [\frac{1}{Cd^{2+}} ][/tex]

Substituting values and making [[tex]Cd^{2+}[/tex]]  the subject

          [tex][Cd^{2+}] =\frac{1}{e^{[\frac{0.03305- 0.038}{\frac{0.059 }{2} }] }}[/tex]

                      [tex]= 0.8455M[/tex]

Given from the question that the volume is 1 Liter

   The number of mole = concentration * volume

                                       = 0.8455 * 1

                                        = 0.8455 moles

At the standard state the concentration of [tex]Cd^{2+}[/tex] is  =1 mole /L

  Hence the amount deposited on the Cd electrode would be

              =  Original amount - The calculated amount

              =   1 - 0.8455

              = 0.1545 moles

The mass deposited is mathematically represented as

             [tex]mass = mole * molar \ mass[/tex]

The Molar mass of Cd [tex]= 112.41 g/mol[/tex]

          Mass  [tex]= 0.1545 *112.41[/tex]

                    [tex]= 17.37g[/tex]

Hence the total mass of the electrode is = standard mass + calculated mass

            M= 100+ 17.37

            M= 117.37g

                               

Answer:

The mass of Cd is 121.92 g

Explanation:

The initial concentrations are:

[tex]nFe=\frac{mass}{molecular weight} =\frac{100}{55.845} =1.7906\\nCd=\frac{100}{112.411} =0.88959[/tex]

Initially:

[Fe2+] = 1.7906[Cd2+] = 0.88959

After the reaction:

[Fe2+] = 1.7906 + x

[Cd2+] = 0.88959 - x

Eo = Ered - Eoxidation = (-0.403 - 0.441) = 0.038

The Nernst equation is:

[tex]E=0.038-\frac{0.0592}{2} log\frac{[Fe^{2+}] }{[Cd^{2+}] } \\0.03305=0.038-0.0296log\frac{1.7906+x}{0.88959-x}[/tex]

Solving for x:

x = -0.195

[Fe2+] = 1.7906 -0.195 = 1.5956

[Cd2+] = 0.88959 + 0.066 = 1.08459

Mass of Cd2+ = 1.08459 * 112.411 = 121.92 g