Answer : The new volume of will be, 5600 mL
Explanation :
To calculate the volume when temperature and pressure has changed, we use the equation given by combined gas law.
The equation follows:
[tex]\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}[/tex]
where,
[tex]P_1,V_1\text{ and }T_1[/tex] are the initial pressure, volume and temperature of the gas
[tex]P_2,V_2\text{ and }T_2[/tex] are the final pressure, volume and temperature of the gas
We are given:
[tex]P_1=1.0atm\\V_1=1400mL\\T_1=20K\\P_2=0.50atm\\V_2=?\\T_2=40K[/tex]
Now put all the given values in above equation, we get:
[tex]\frac{1.0atm\times 1400mL}{20K}=\frac{0.50atm\times V_2}{40K}[/tex]
[tex]V_2=5600mL[/tex]
Therefore, the new volume of will be, 5600 mL