P(x < 21 | μ = 23 and σ = 3) enter the probability of fewer than 21 outcomes if the mean is 23 and the standard deviation is 3 (b) P(x ≥ 66 | μ = 50 and σ = 9) enter the probability of 66 or more outcomes if the mean is 50 and the standard deviation is 9 (c) P(x > 47 | μ = 50 and σ = 5) enter the probability of more than 47 outcomes if the mean is 50 and the standard deviation is 5 (d) P(17 < x < 24 | μ = 21 and σ = 3) enter the probability of more than 17 and fewer than 24 outcomes if the mean is 21 and the standard deviation is 3 (e) P(x ≥ 95 | μ = 80 and σ = 1.82) enter the probability of 95 or more outcomes if the mean is 80 and the standard deviation is 1.82

Respuesta :

Answer:

(a) The value of P (X < 21 | μ = 23 and σ = 3) is 0.2514.

(b) The value of P (X ≥ 66 | μ = 50 and σ = 9) is 0.0427.

(c) The value of P (X > 47 | μ = 50 and σ = 5) is 0.7258.

(d) The value of P (17 < X < 24 | μ = 21 and σ = 3) is 0.7495.

(e) The value of P (X ≥ 95 | μ = 80 and σ = 1.82) is 0.

Step-by-step explanation:

The random variable X is Normally distributed.

(a)

The mean and standard deviation are:

[tex]\mu=23\\\sigma=3[/tex]

Compute the value of P (X < 21) as follows:

[tex]P(X<21)=P(\frac{X-\mu}{\sigma}<\frac{21-23}{3})[/tex]

                  [tex]=P(Z<-0.67)\\=1-P(Z<0.67)\\=1-0.74857\\=0.25143\\\approx0.2514[/tex]

Thus, the value of P (X < 21 | μ = 23 and σ = 3) is 0.2514.

(b)

The mean and standard deviation are:

[tex]\mu=50\\\sigma=9[/tex]

Compute the value of P (X ≥ 66) as follows:

Use continuity correction.

P (X ≥ 66) = P (X > 66 - 0.5)

                = P (X > 65.5)

                [tex]=P(\frac{X-\mu}{\sigma}>\frac{65.5-50}{9})[/tex]

                [tex]=P(Z>1.72)\\=1-P(Z<1.72)\\=1-0.9573\\=0.0427[/tex]

Thus, the value of P (X ≥ 66 | μ = 50 and σ = 9) is 0.0427.

(c)

The mean and standard deviation are:

[tex]\mu=50\\\sigma=5[/tex]

Compute the value of P (X > 47) as follows:

[tex]P(X>47)=P(\frac{X-\mu}{\sigma}>\frac{47-50}{5})[/tex]

                 [tex]=P(Z>-0.60)\\=P(Z<0.60)\\=0.7258[/tex]

Thus, the value of P (X > 47 | μ = 50 and σ = 5) is 0.7258.

(d)

The mean and standard deviation are:

[tex]\mu=21\\\sigma=3[/tex]

Compute the value of P (17 < X < 24) as follows:

[tex]P(17<X<24)=P(\frac{17-21}{3}<\frac{X-\mu}{\sigma}<\frac{24-21}{3})[/tex]

                          [tex]=P(-1.33<Z<1)\\=P(Z<1)-P(Z<-1.33)\\=0.8413-0.0918\\=0.7495[/tex]

Thus, the value of P (17 < X < 24 | μ = 21 and σ = 3) is 0.7495.

(e)

The mean and standard deviation are:

[tex]\mu=80\\\sigma=1.82[/tex]

Compute the value of P (X ≥ 95) as follows:

Use continuity correction:

P (X ≥ 95) = P (X > 95 - 0.5)

                = P (X > 94.5)

                [tex]=P(\frac{X-\mu}{\sigma}>\frac{94.5-80}{1.82})[/tex]

                [tex]=P(Z>7.97)\\=1-P(Z<7.97)\\=1-(\approx1)\\=0[/tex]

Thus, the value of P (X ≥ 95 | μ = 80 and σ = 1.82) is 0.