Solve the given equation. (Enter your answers as a comma-separated list. Let k be any integer. Round terms to three decimal places where appropriate. If there is no solution, enter NO SOLUTION.) 8 sin(2θ) − 2 sin(θ) = 0

Respuesta :

Answer:

[tex]\theta=k\pi, \hspace{3}k\in Z\\\\ or\\\theta =2\pi k \pm arccos(\frac{1 }{8} ), \hspace{3}k\in Z\\[/tex]

Step-by-step explanation:

Factor constant terms:

[tex]-2(-4sin(2\theta)+sin(\theta))=0[/tex]

Divide both sides by -2:

[tex]sin(\theta)-4sin(2 \theta)=0[/tex]

Expand trigonometric functions using the fact:

[tex]sin(2 \theta) =2 sin(\theta) cos(\theta)[/tex]

So:

[tex]sin(\theta) -8sin(\theta)cos(\theta)=0[/tex]

Factor sin(x) and constant terms and multiply both sides by -1:

[tex]sin(\theta) (8cos(\theta)-1)=0[/tex]

Split into two equations:

[tex](1)=8cos(\theta)-1=0\\\\(2)=sin(\theta)=0[/tex]

For (1)

Add 1 to both sides and divide both sides by 8:

[tex]cos(\theta)=\frac{1}{8}[/tex]

Take the inverse cosine of both sides:

[tex]\theta =2\pi k \pm arccos(\frac{1 }{8} ), \hspace{3}k\in Z[/tex]

For (2)

Simply take the inverse sine of both sides

[tex]\theta = k \pi, \hspace{3}k\in Z[/tex]

Therefore, the solutions are given by:

[tex]\theta=k\pi, \hspace{3}k\in Z\\\\ or\\ \theta =2\pi k \pm arccos(\frac{1 }{8} ), \hspace{3}k\in Z\\[/tex]