Answer:
a) The mechanical force is -226.2 N
b) Using the coenergy the mechanical force is -226.2 N
Explanation:
a) Energy of the system:
[tex]\lambda =\frac{1.2*i^{1/2} }{g} \\i=(\frac{\lambda g}{1.2} )^{2}[/tex]
[tex]\frac{\delta w_{f} }{\delta g} =\frac{g^{2}\lambda ^{3} }{3*1.2^{2} }[/tex]
[tex]f_{m}=- \frac{\delta w_{f} }{\delta g} =-\frac{g^{2}\lambda ^{3} }{3*1.2^{2} }[/tex]
If i = 2A and g = 10 cm
[tex]\lambda =\frac{1.2*i^{1/2} }{g} =\frac{1.2*2^{1/2} }{10x10^{-2} } =16.97[/tex]
[tex]f_{m}=-\frac{g^{2}\lambda ^{3} }{3*1.2^{2} }=-\frac{16.97^{3}*2*0.1 }{3*1.2^{2} } =-226.2N[/tex]
b) Using the coenergy of the system:
[tex]f_{m}=- \frac{\delta w_{f} }{\delta g} =-\frac{1.2*2*i^{3/2} }{3*g^{2} }=-\frac{1.2*2*2^{3/2} }{3*0.1^{2} } =-226.2N[/tex]