Solution:
Using Ideal Gas law:
P1 = 1.45 atm
V1 = 5.15 L
P2 = ?
V2 = 3.43 L
Using Ideal Gas Law, PV = nRT:
Now, the number of moles (n) is the same independent of pressure and distance, so let's say that the temperature is stable since there is no details on the issue. As a consequence,
P1V1 = nRT = P2V2
P1V1 = P2V2
Solve for P2 and you're going to get 2.03 atm. It makes sense as you decrease the amount of the gas by compressing it, which implies that you raise the heat.
2) P = 1.5 atm
T = 301 K
n = 0.785 moles
PV = nRT
V = nRT/P
R = 0.0821 (L*atm)/(mol * K)
Therefore,
V = (0.785 * 0.0821 * 301)/1.5 = 19.4 L