Answer:
The concentration of salt in the tank approaches [tex]35 \mathrm{g} / \mathrm{L},[/tex]
Step-by-step explanation:
Data provide in the question:
Water contained in the tank = 8000 L
Salt per litre contained in Brine = 35 g/L
Rate of pumping water into the tank = 25 L/min
Concentration of salt [tex]\lim _{t \rightarrow \infty} C(t)=\lim _{t \rightarrow \infty} \frac{35 t}{320+t}[/tex]
Now,
Dividing both numerator and denominator by [tex]t[/tex], we have
[tex]\lim _{t \rightarrow \infty} \frac{\frac{1}{t} 35 t}{\frac{1}{t}(320+t)}=\lim _{t \rightarrow \infty} \frac{35}{\frac{320}{t}+1}=35[/tex]
Here,
The concentration of salt in the tank approaches [tex]35 \mathrm{g} / \mathrm{L},[/tex]