Decide whether the normal sampling distribution can be used. If it can be​ used, test the claim about the difference between two population proportions p 1p1 and p 2p2 at the given level of significance alphaα using the given sample statistics. Assume the sample statistics are from independent random samples. ​Claim: p 1p1equals=p 2p2​, alphaαequals=0.100.10 Sample​ statistics: x 1x1equals=5959​, n 1n1equals=171171 and x 2x2equals=3636​, n 2n2equals=203203 Can a normal sampling distribution be​ used? No Yes

Identify the null and alternative hypotheses.

Respuesta :

Answer:

Null Hypothesis, [tex]H_0[/tex] :  [tex]p_1=p_2[/tex]  or [tex]p_1-p_2=0[/tex]   

Alternate Hypothesis, [tex]H_a[/tex] : [tex]p_1\neq p_2[/tex]  or  [tex]p_1-p_2\neq 0[/tex]  

Yes, normal sampling distribution can be​ used.

Step-by-step explanation:

We are given that the sample statistics are from independent random samples. ​Claim: [tex]p_1[/tex] = [tex]p_2[/tex] ​, alpha(α) = 0.10 Sample​ statistics: [tex]x_1[/tex] =59​, [tex]n_1[/tex] =171 and [tex]x_2[/tex] =36​, [tex]n_2[/tex] = 203

We have to test the claim about the difference between two population proportions [tex]p_1[/tex] and [tex]p_2[/tex] at the given level of significance alpha(α) using the given sample statistics.

Let [tex]p_1[/tex] = population proportion of first group

     [tex]p_2[/tex] = population proportion of second group

SO, Null Hypothesis, [tex]H_0[/tex] :  [tex]p_1=p_2[/tex]  or [tex]p_1-p_2=0[/tex]   

Alternate Hypothesis, [tex]H_a[/tex] : [tex]p_1\neq p_2[/tex]  or  [tex]p_1-p_2\neq 0[/tex]  

The test statistics that will be used here is Two-sample z proportion statistics;

              T.S. = [tex]\frac{(\hat p_1 - \hat p_2)-(p_1-p_2)}{ \sqrt{\frac{\hat p_1(1-\hat p_1) }{n_1} +\frac{\hat p_2(1-\hat p_2)}{n_2}} }[/tex]  ~ N(0,1)

where, [tex]\hat p_1 = \frac{x_1}{n_1}[/tex] = [tex]\frac{59}{171}[/tex] = sample proportion of first group

            [tex]\hat p_2 = \frac{x_2}{n_2}[/tex] = [tex]\frac{36}{203}[/tex] = sample proportion of second group

             [tex]n_1[/tex] = sample size of first group = 171

             [tex]n_2[/tex] = sample size of second group = 203

So, Yes here normal sampling distribution can be used because the proportion test is approximately followed by a normal z distribution.