Respuesta :
Answer:
No solution
Step-by-step explanation:
x - 4y = 1 --> (1)
5x - 20y = 4 --> (2)
y = (¼)x - ¼ --> (1)
y = (¼)x - ⅕ --> (2)
Since these are 2 parallel lines with different y-intercepts, they will never meet
Step-by-step explanation:
[tex]x - 4y = 1.5 \: \: \: \: ...(1) \\ x - 20y = 4 \: \: \: \: ...(2)[/tex]
from equation (2) we get,
[tex]x = 20y + 4[/tex]
now put the value of x = 20y + 4 in equation (1)
[tex]20y + 4 - 4y = 1.5 \\ 16y = 1.5 - 4 \\ 16y = - 2.5 \\ y = - \frac{25}{16 \times 10} \\ \\ y = - \frac{5}{32} [/tex]
now put the value of y in equation (2) we get
[tex]x - 20( - \frac{5}{32} ) = 4 \\ \\ x + \frac{100}{32} = 4 \\ \\ x + \frac{25}{8} = 4 \\ \\ x = 4 - \frac{25}{8} \\ \\ x = \frac{32 - 25}{8} \\ \\ x = \frac{7}{8} [/tex]