A rotating wheel requires a time Δt = [01]____________________s to rotate 37.0 revolutions. Its angular speed at the end of the interval is ω = 75.9 rad/s. What is the constant angular acceleration (rad/s2 ) of the wheel?

Respuesta :

Here is the correct question

A rotating wheel requires a time Δt = 4.28 seconds  to rotate 37.0 revolutions. Its angular speed at the end of  4.28 seconds interval is ω = 75.9 rad/s. What is the constant angular acceleration (rad/s² ) of the wheel?

Answer:

10.09 rad/s²

Explanation:

Given that :

[tex]\theta = \ 37.0 \ revolutions[/tex]

Then since 1 revolution = [tex]2 \pi \ rad[/tex]

[tex]\theta = 37.0 \ rev * \frac{2 \pi \ rad }{ 1 \ rev}[/tex]

[tex]\theta = 232.48 \ rad[/tex]

The first equation of motion for wheel can  be expressed as :

[tex]\omega = \omega_0t + \alpha t[/tex]

[tex]\omega_0 = \omega- \alpha t[/tex]

where [tex]\omega[/tex] = 75.9 rad/s

[tex]\omega_0 = 75.9 rad/s - \alpha (4.28 \ s)[/tex]

From the second equation of the motion

[tex]\theta = \omega_0t + \frac{1}{2} \alpha t ^2[/tex]

where ;

[tex]\omega_0 = 75.9 rad/s - \alpha (4.28 \ s)[/tex]

t = 4.28 s

[tex]\theta = 232.48 \ rad[/tex]

Then

[tex]232.48 \ rad= (75.9 rad/s - \alpha (4.28 \ s))(4.28 \ s)+ \frac{1}{2} \alpha (4.28 \ s) ^2[/tex]

[tex]232.48 \ rad= 324.852 rad/s - 18.3184 \alpha s^2 + 9.1592 \alpha s ^2[/tex]

[tex]324.852 rad/s - 232.48 \ rad= 18.3184 \alpha s^2 - 9.1592 \alpha s ^2[/tex]

[tex]92.372 \ rad= 9.1592 \alpha s ^2[/tex]

[tex]\alpha = \frac {92.372 \ rad} {9.1592 \ s ^2}[/tex]

[tex]\alpha = 10.09 \ \ rad/s^2[/tex]

Thus, the angular acceleration of the wheel = 10.09 rad/s²