The final volume of buffer solution must be 100.00 mL and the final concentration of the weak acid must be 0.100 M. Based on this information, what mass of solid conjugate base should the student weigh out to make the buffer solution with a pH of 2.00?

Respuesta :

Answer: The mass of base required is 3.87 g.

Explanation:

The given data is as follows.

       pH of buffer = 2.0,         volume of the solution (V) = 100 mL,

  molarity of HA, [HA] = 0.1 M,      [tex]K_{a} = 1.20 \times 10^{-2}[/tex]

Now, we will calculate the value of [tex]pK_{a}[/tex] as follows.

         [tex]pK_{a} = -log (K_{a})[/tex]

                    = [tex]-log (1.20 \times 10^{-2})[/tex]  

                    = 1.92

According to Henderson equation,

         pH = [tex]pK_{a} + log \frac{[A^{-}]}{[HA]}[/tex]

        2.0 = [tex]1.92 + log \frac{[A^{-}]}{0.1 M}[/tex]

      [tex][A^{-}][/tex] = 0.12 M

 Moles of base = [tex]0.12 M \times 100 mL \times \frac{1 L}{1000 mL}[/tex]

                         = 0.012 mol

Hence, mass of the base will be calculated as follows.

       [tex]0.012 mol \times \frac{322.1 g}{1 mol Na_{2}SO_{4}.10H_{2}O}[/tex]

               = 3.87 g

Hence, the mass of base required is 3.87 g.

The required mass of solid conjugate base will be:

"3.87 g".

Buffer solution

According to the question,

pH of buffer = 2.00

Volume of solution, V = 100.00 mL

Molarity of HA, [HA] = 0.1 M

The value of p[tex]K_a[/tex] will be:

= -log([tex]K_a[/tex])

= -log(1.20 × 10⁻²)

= 1.92

By using Henderson equation,

→ pH = p[tex]K_a[/tex] + log [tex]\frac{[A^-]}{HA}[/tex]

By substituting the values,

 2.0 = 1.92 + log [tex]\frac{[A^-]}{0.1}[/tex]

[A⁻] = 0.12 M

Now,

Moles of base will be:

= 0.12 × 100 × [tex]\frac{1 \ L}{1000 \ mL}[/tex]

= 0.012 mol

Hence,

The required base mass be:

= 0.012 × [tex]\frac{322.1}{1 \ mol \ Na_2SO_4. 10 H_2O}[/tex]

= 3.87 g

Thus the above answer is correct.

Find out more information about buffer solution here:

https://brainly.com/question/22390063