Respuesta :

Given:

∠M = 0.775 radians, m = 5 ft, n = 7 ft, p = 4 ft

To find:

The measure of angle P.

Solution:

Using law of cosine:

[tex]p^2=m^2+n^2-2mn \cos P[/tex]

Substitute the given values.

[tex]4^2=5^2+7^2-2\times 5 \times 7 \cos P[/tex]

[tex]16=25+49-70 \cos P[/tex]

[tex]16=74-70 \cos P[/tex]

Subtract 74 from both sides.

[tex]16-74=74-70 \cos P-74[/tex]

[tex]-58=-70 \cos P[/tex]

Multiply by -70 on both sides.

[tex]$ \frac{-58}{-70} =\frac{-70 \cos P}{-70}[/tex]

[tex]$ \frac{29}{35} = \cos P[/tex]

[tex]$\cos^{-1} \frac{29}{35} = P[/tex]

[tex]$34^\circ = P[/tex]

The measure of angle P is 34°.