Let f be the function given by f(x)=5cos2(x2)+ln(x+1)−3. The derivative of f is given by f′(x)=−5cos(x2)sin(x2)+1x+1. What value of c satisfies the conclusion of the Mean Value Theorem applied to f on the interval [1,4] ?

Respuesta :

Over the interval, 1 < c < 4 there are two solutions of c = 1.0525 ; 2.217

Step-by-step explanation:

Given :

[tex]f(x) = 5 cos^2(x^2)+ln(x+1)-3[/tex]   ----- (1)

[tex]f'(x)=-5cos(x^2)sin(x^2)+\dfrac{1}{x+1}[/tex]  ------ (2)

Calculation :

According to mean value theorem,

[tex]f'(c)= \dfrac{f(b)-f(a)}{b-a}\\[/tex]

[tex]f'(c)=\dfrac{f(4)-f(1)}{4-1}=\dfrac{f(4)-f(1)}{3}\\[/tex]    ------- (3)

[tex]f(4) = 5cos^2(4^2)+ln(4+1)-3\\[/tex]

[tex]f(4) = 3.2296[/tex]

[tex]f(1)= 5cos^2(1^2)+ln(1+1)-3[/tex]

[tex]f(1)=2.6916[/tex]

Now, from equation (2) and (3) we get

[tex]-5 cos(c^2)sin(c^2)+\dfrac{1}{c+1}= \dfrac {3.2269-2.6916}{3}[/tex]

[tex]-5 cos(c^2)sin(c^2)+\dfrac{1}{c+1}=0.17844[/tex]

[tex]-5sin(c)+\dfrac{2}{(c+1)} =0.35688[/tex]

Over the interval 1 < c < 4 there are two solutions of c = 1.0525 ; 2.217

For more information, refer the link given below

https://brainly.com/question/9974440?referrer=searchResults