At a certain location, the horizontal component of the earth's magnetic field is 2.7 × 10-5 T, due north. A proton moves eastward with just the right speed, so the magnetic force on it balances its weight. Find the speed of the proton.

Respuesta :

Answer:

Therefore the velocity of the proton is [tex]3.79 \times 10^{-3}[/tex] m/s towards east.

Explanation:

The mass of proton is m= [tex]1.67\times 10^{-27}[/tex] kg.

q= [tex]1.6\times 10^{-19}[/tex] C is  the magnitude of the charge of a proton.

The earth's magnetic field is B=[tex]2.7\times 10^{-5}[/tex] T toward north.

Let v be the velocity of the proton towards east.

The angle between the velocity of proton towards east and magnetic field towards north is [tex]90^\circ[/tex].

We know that,

[tex]F=|q|Bvsin \theta[/tex]

[tex]\Rightarrow mg=|q|Bvsin \theta[/tex]

[tex]\Rightarrow v=\frac{mg}{|q|Bsin\theta}[/tex]

Now putting the all values

[tex]\therefore v=\frac{1.67\times 10^{-27}\times 9.8}{1.6\times 10^{-19}\times 2.7\times 10^{-5} sin 90^\circ}[/tex]

    [tex]=3.79 \times 10^{-3}[/tex] m/s

Therefore the velocity of the proton is [tex]3.79 \times 10^{-3}[/tex] m/s towards east.