Respuesta :
Answer:
[tex]h = 0.0362\,m[/tex]
Explanation:
Given the absence of non-conservative force, the motion of the coin is modelled after the Principle of Energy Conservation solely.
[tex]U_{g,A} + K_{A} = U_{g,B} + K_{B}[/tex]
[tex]U_{g,B} - U_{g,A} = K_{A} - K_{B}[/tex]
[tex]m\cdot g \cdot h = \frac{1}{2}\cdot I \cdot \omega_{o}^{2}[/tex]
The moment of inertia of the coin is:
[tex]I = \frac{1}{2}\cdot m \cdot r^{2}[/tex]
After some algebraic handling, an expression for the maximum vertical height is derived:
[tex]m\cdot g \cdot h = \frac{1}{4}\cdot m \cdot r^{2}\cdot \omega_{o}^{2}[/tex]
[tex]h = \frac{r^{2}\cdot \omega_{o}^{2}}{g}[/tex]
[tex]h = \frac{(0.0108\,m)^{2}\cdot (55.2\,\frac{rad}{s} )^{2}}{9.807\,\frac{m}{s^{2}} }[/tex]
[tex]h = 0.0362\,m[/tex]
The vertical height will be "0.0362 m".
Given values:
- Initial angular speed, [tex]\omega_0 = 55.2 \ rad/s[/tex]
- Diameter, [tex]d = 0.0215 \ m[/tex]
- Inclined plane = [tex]20^{\circ}[/tex]
By using Principle of energy conservation,
→ [tex]U_g, A+K_A = U_g,B+K_B[/tex]
→ [tex]U_g, B -U_g,A = K_A -K_B[/tex]
[tex]mgh = \frac{1}{2} I \omega_0^2[/tex]
and we know,
→ [tex]I = \frac{1}{2} mr^2[/tex]
Now,
→ [tex]mgh = \frac{1}{4} mr^2 \omega_0^2[/tex]
or,
→ [tex]h = \frac{r^2 \omega_0^2}{g}[/tex]
By putting the values,
[tex]= \frac{(0.0108)^2\times (55.2)^2}{9.807}[/tex]
[tex]= 0.0362 \ m[/tex]
Thus the response above is appropriate.
Find out more information about diameter here:
https://brainly.com/question/732113
