Answer:
a) For y = 102 mA, R = 98.039 ohms
For y = 97 mA, R = 103.09 ohms
b) Check explanatios for b
Explanation:
Applied voltage, V = 10 V
For the first measurement, current [tex]y_{1} = 102 mA = 0.102 A[/tex]
According to ohm's law, V = IR
R = V/I
Here, [tex]I = y_{1}[/tex]
[tex]R = \frac{V}{y_{1} } \\R = \frac{10}{0.102} \\R = 98.039 ohms[/tex]
For the second measurement, current [tex]y_{2} = 97 mA = 0.097 A[/tex]
[tex]R = \frac{V}{y_{2} }[/tex]
[tex]R = \frac{10}{0.097} \\R = 103 .09 ohms[/tex]
b) [tex]y = \left[\begin{array}{ccc}y_{1} &y_{2} \end{array}\right] ^{T}[/tex]
[tex]y = \left[\begin{array}{ccc}y_{1} \\y_{2} \end{array}\right][/tex]
[tex]y = \left[\begin{array}{ccc}102*10^{-3} \\97*10^{-3} \end{array}\right][/tex]
A linear equation is of the form y = Gx
The nominal value of the resistance = 100 ohms
[tex]x = \left[\begin{array}{ccc}100\end{array}\right][/tex]
[tex]\left[\begin{array}{ccc}102*10^{-3} \\97*10^{-3} \end{array}\right] = \left[\begin{array}{ccc}G_{1} \\G_{2} \end{array}\right] \left[\begin{array}{ccc}100\end{array}\right]\\\left[\begin{array}{ccc}G_{1} \\G_{2} \end{array}\right] = \left[\begin{array}{ccc}102*10^{-5} \\97*10^{-5} \end{array}\right][/tex]