Water is drained out of tank, shaped as an inverted right circular cone that has a radius of 6cm and a height of 12cm, at the rate of 3 cm3/min. At what rate is the depth of the water changing at the instant when the water in the tank is 9 cm deep? Give an exact answer showing all work and include units in your answer. (10 points)

Respuesta :

Answer:

Therefore the depth of the water is changing at the instant when the water in the tank is 9 cm deep at rate [tex]\frac{4}{27\pi}[/tex] [tex]cm^3[/tex]/ min.

Step-by-step explanation:

Given that,

Radius of the cone(r)= 6 cm

Height of the cone (h)= 12 cm

[tex]\therefore \frac rh =\frac 6{12}[/tex]

[tex]\Rightarrow h=2r[/tex]

[tex]\Rightarrow r=\frac h2[/tex]

The volume of the cone is (V) [tex]=\frac13 \pi r^2 h[/tex]

[tex]\therefore V=\frac13 \pi r^2 h[/tex]

Putting [tex]r=\frac h2[/tex]

[tex]\therefore V=\frac13 \pi (\frac h2)^2 h[/tex]

[tex]\Rightarrow V=\frac1 {12} \pi h^3[/tex]

Differentiating with respect to t

[tex]\frac{dV}{dt}=\frac 1{12}\pi . (3h^2) \frac{dh}{dt}[/tex]

[tex]\Rightarrow \frac{dV}{dt}=\frac{ 1}{4}\pi . h^2\frac{dh}{dt}[/tex] ....(1)

Given that water is drained out of tank at the rate 3 [tex]cm^3[/tex]/ min.

It means the rate change of volume is  3 [tex]cm^3[/tex]/ min that is   [tex]\frac{dV}{dt}=3 \ cm^3/min[/tex]

Putting the value of [tex]\frac{dV}{dt}[/tex] in equation (1)

[tex]\therefore 3=\frac{ 1}{4}\pi . h^2\frac{dh}{dt}[/tex]

[tex]\Rightarrow \frac{dh}{dt}=\frac{3\times 4}{\pi h^2}[/tex]

[tex]\Rightarrow \frac{dh}{dt}=\frac{12}{\pi h^2}[/tex]

To find the rate of the depth of water changing at 9 cm depth, we need to put h=9 cm in the above equation.

[tex]\therefore \frac{dh}{dt}|_{h=9}=\frac{12}{\pi .9^2}[/tex]

              [tex]=\frac{4}{27\pi}[/tex] [tex]cm^3[/tex]/ min.

Therefore the depth of the water is changing at the instant when the water in the tank is 9 cm deep at rate [tex]\frac{4}{27\pi}[/tex] [tex]cm^3[/tex]/ min.