Answer:
Lower end point = 31.8 hg
Upper end point = 33.7 hg
Step-by-step explanation:
We are given the following in the question:
Sample mean, [tex]\bar{x}[/tex] = 32.7 hg
Sample size, n = 195
Alpha, α = 0.05
Standard deviation, s = 6.6 hg
Degree of freedom = n - 1 = 194
95% Confidence interval:
[tex]\bar{x} \pm t_{critical}\displaystyle\frac{s}{\sqrt{n}}[/tex]
Putting the values, we get,
[tex]t_{critical}\text{ at degree of freedom 194 and}~\alpha_{0.05} = \pm 1.972[/tex]
[tex]32.7 \pm 1.972(\dfrac{6.6}{\sqrt{195}} )\\\\ = 32.7 \pm 0.932\\ = (31.768 ,33.632)\\\approx (31.8,33.7)[/tex]
Lower end point = 31.8 hg
Upper end point = 33.7 hg