a line passing through the point (12, - 5) has a slope of 1/3. Complete the work shown. Substitute known values for m, x1, and y1. Distribute the slope through the parentheses, solve for the y variable

The solution for the variable y is [tex]y=\frac{1}{3} x-9[/tex], if a given line passing through the point (12, -5) has a slope of [tex]\frac{1}{3}[/tex].
Step-by-step explanation:
The given is,
Point - (12, -5)
Slope - [tex]\frac{1}{3}[/tex]
Step:1
Formula for slope of line,
[tex]m = \frac{y_{2}-y_{1} } {x_{2} - x_{1} }[/tex]...........................(1)
Where, [tex](x_{1} ,y_{1} )[/tex], [tex](x_{2} ,y_{2} )[/tex] are points
m - Slope
From given,
(12, -5) - [tex](x_{1} ,y_{1} )[/tex]
m = [tex]\frac{1}{3}[/tex]
Let, (x,y ) = [tex](x_{2} ,y_{2} )[/tex]
Equation (1) becomes,
[tex]\frac{1}{3} = \frac{(y - (-5))}{x-12}[/tex]
[tex]\frac{1}{3} (x-12) = (y-(-5))[/tex]
[tex]\frac{1}{3} (x-12) = (y+5)[/tex]
[tex](y+5) = \frac{1}{3} (x-12)[/tex]
[tex](y+5) = (\frac{1}{3} x ) -\frac{1}{3}(12))[/tex]
[tex](y+5) = (\frac{1}{3} x ) -4[/tex]
[tex]y = \frac{1}{3} x -4-5[/tex]
[tex]y = \frac{1}{3} x -9[/tex]
Result:
The solution for the variable y is [tex]y=\frac{1}{3} x-9[/tex], if a given line passing through the point (12, -5) has a slope of [tex]\frac{1}{3}[/tex].
Answer:
the answer is -9
Step-by-step explanation:
i took the test and got it right