a line passing through the point (12, - 5) has a slope of 1/3. Complete the work shown. Substitute known values for m, x1, and y1. Distribute the slope through the parentheses, solve for the y variable

a line passing through the point 12 5 has a slope of 13 Complete the work shown Substitute known values for m x1 and y1 Distribute the slope through the parenth class=

Respuesta :

The solution for the variable y is [tex]y=\frac{1}{3} x-9[/tex], if a given line passing through the point (12, -5) has a slope of [tex]\frac{1}{3}[/tex].

Step-by-step explanation:

The given is,

                         Point - (12, -5)

                         Slope - [tex]\frac{1}{3}[/tex]

Step:1

          Formula for slope of line,

                                     [tex]m = \frac{y_{2}-y_{1} } {x_{2} - x_{1} }[/tex]...........................(1)

         Where, [tex](x_{1} ,y_{1} )[/tex], [tex](x_{2} ,y_{2} )[/tex] are points

                      m - Slope

         From given,

                     (12, -5) -  [tex](x_{1} ,y_{1} )[/tex]

                      m = [tex]\frac{1}{3}[/tex]

         Let, (x,y ) = [tex](x_{2} ,y_{2} )[/tex]

         Equation (1) becomes,

                                  [tex]\frac{1}{3} = \frac{(y - (-5))}{x-12}[/tex]

                     [tex]\frac{1}{3} (x-12) = (y-(-5))[/tex]

                     [tex]\frac{1}{3} (x-12) = (y+5)[/tex]

                         [tex](y+5) = \frac{1}{3} (x-12)[/tex]

                         [tex](y+5) = (\frac{1}{3} x ) -\frac{1}{3}(12))[/tex]

                          [tex](y+5) = (\frac{1}{3} x ) -4[/tex]

                                   [tex]y = \frac{1}{3} x -4-5[/tex]

                                   [tex]y = \frac{1}{3} x -9[/tex]

Result:

       The solution for the variable y is [tex]y=\frac{1}{3} x-9[/tex], if a given line passing through the point (12, -5) has a slope of [tex]\frac{1}{3}[/tex].

Answer:

the answer is -9

Step-by-step explanation:

i took the test and got it right