Find the Cartesian coordinates of the given polar coordinates. Then plot the point. (a) (2, π) (x, y) = WebAssign Plot WebAssign Plot WebAssign Plot WebAssign Plot ((b) (4, −2π/3) (x, y) = WebAssign Plot WebAssign Plot WebAssign Plot WebAssign Plot (c) (−4, 3π/4) (x, y) = WebAssign Plot WebAssign Plot WebAssign Plot WebAssign Plot

Respuesta :

Answer:

(a) ∴(x,y)= (-2,0)

(b) ∴(x,y)= (-2,[tex]-2\sqrt3[/tex])

(c) ∴(x,y)=[tex](2\sqrt2,-2\sqrt 2)[/tex]

Step-by-step explanation:

To convert from polar coordinate to Cartesian Coordinate(x,y)

  • x = r cos θ
  • y = r sin θ

(a)

Here r = 2 and θ = π

x= 2 cos π = -2

y=  2 sin π =  0

∴(x,y)= (-2,0)

(b)

Here r = 4 and [tex]\theta=-\frac{2\pi}{3}[/tex]

x= 4 cos [tex](-\frac{2\pi}{3})[/tex]  [tex]=4\times (-\frac12)[/tex] = - 2

y=  4 sin [tex](-\frac{2\pi}{3})[/tex]  [tex]=4\times (-\frac{\sqrt3}{2})[/tex] =[tex]=-2\sqrt3[/tex]

∴(x,y)= (-2,[tex]-2\sqrt3[/tex])

(c)

Here r= -4  and [tex]\theta= \frac{3\pi}{4}[/tex]

[tex]x=-4 cos (\frac{3\pi}{4})=-4 \times (-\frac1{\sqrt2)}=2\sqrt2[/tex]

[tex]y=-4 sin(\frac{3\pi}{4})=-4\times \frac{1}{\sqrt2} =-2\sqrt 2[/tex]

∴(x,y)=[tex](2\sqrt2,-2\sqrt 2)[/tex]