A laser is emitting photons with a wavelength of 639.8 nm. What is the energy for 1 mole of these photons? For Planck's constant, use a value of 6.626x10-34 J s. Use units of kJ/mol. Report just the number, not the units.

Respuesta :

Answer:

The energy for 1 mole of these photons is E = 31 × [tex]10^{-23}[/tex] [tex]\frac{KJ}{mol}[/tex]  

Explanation:

Given data

Wavelength [tex]\lambda =[/tex] 639.8 × [tex]10^{-9}[/tex] m

Plank constant h = 6.626 × [tex]10^{-34}[/tex] J sec

Speed of light c = 3 × [tex]10^{8}[/tex] meter per second

We know that Energy  of a photon is given by

[tex]E = \frac{h c}{\lambda}[/tex]

Value of ( h c ) = 6.626 × [tex]10^{-34}[/tex]  × 3 × [tex]10^{8}[/tex] = 19.878 × [tex]10^{-26}[/tex]

[tex]\lambda =[/tex] 639.8 × [tex]10^{-9}[/tex] m

Now Energy  of a photon

[tex]E =( \frac{19.878}{639.8}) 10^{-17}[/tex]

E = 0.031 × [tex]10^{-17}[/tex] Joule per mole

E = 31 × [tex]10^{-23}[/tex] [tex]\frac{KJ}{mol}[/tex]  

Therefore the energy for 1 mole of these photons is E = 31 × [tex]10^{-23}[/tex] [tex]\frac{KJ}{mol}[/tex]