Answer:
The energy for 1 mole of these photons is E = 31 × [tex]10^{-23}[/tex] [tex]\frac{KJ}{mol}[/tex]
Explanation:
Given data
Wavelength [tex]\lambda =[/tex] 639.8 × [tex]10^{-9}[/tex] m
Plank constant h = 6.626 × [tex]10^{-34}[/tex] J sec
Speed of light c = 3 × [tex]10^{8}[/tex] meter per second
We know that Energy of a photon is given by
[tex]E = \frac{h c}{\lambda}[/tex]
Value of ( h c ) = 6.626 × [tex]10^{-34}[/tex] × 3 × [tex]10^{8}[/tex] = 19.878 × [tex]10^{-26}[/tex]
[tex]\lambda =[/tex] 639.8 × [tex]10^{-9}[/tex] m
Now Energy of a photon
[tex]E =( \frac{19.878}{639.8}) 10^{-17}[/tex]
E = 0.031 × [tex]10^{-17}[/tex] Joule per mole
E = 31 × [tex]10^{-23}[/tex] [tex]\frac{KJ}{mol}[/tex]
Therefore the energy for 1 mole of these photons is E = 31 × [tex]10^{-23}[/tex] [tex]\frac{KJ}{mol}[/tex]