A square metal plate of edge length 6.4 cm and negligible thickness has a total charge of 6.6 x 10-6 C. Estimate the magnitude E of the electric field just off the center of the plate (at, say, a distance of 0.71 mm from the center) by assuming that the charge is spread uniformly over the two faces of the plate. Express your answer in terms of N/C.

Respuesta :

Answer:

[tex]E=9.1\times 10^7 N/C[/tex]

Explanation:

We are given that

Length of side,l=6.4 cm=[tex]6.4\times 10^{-2} m[/tex]

1 m=100 cm

Total charge,q=[tex]6.6\times 10^{-6} C[/tex]

We have to find the magnitude E of the electric field just off the center of the plate.

Area charge density,[tex]\sigma=\frac{q}{A}=\frac{q}{l^2}=\frac{6.6\times 10^{-6}}{(6.4\times 10^{-2})^2}[/tex]

[tex]\sigma=16.1\times 10^{-4}C/m^2[/tex]

Electric field,[tex]E=\frac{\sigma}{2\epsilon_0}[/tex]

Where [tex]\epsilon_0=8.85\times 10^{-12}[/tex]

Substitute the values

[tex]E=\frac{16.1\times 10^{-4}}{2\times 8.85\times 10^{-12}}[/tex]

[tex]E=9.1\times 10^7 N/C[/tex]