At some instant and location, the electric field associated with an electromagnetic wave in vacuum has the strength 57.5 V/m. Find the magnetic field strength B , the total energy density u , and the power flow per unit area, all at the same instant and location.

Respuesta :

Answer:

[tex]1.9167\times 10^{-7}\ T[/tex]

[tex]2.9247498849\times 10^{-8}\ J/m^3[/tex]

[tex]8.7742496547\ W/m^2[/tex]

Explanation:

[tex]\epsilon_0[/tex] = Permittivity of free space = [tex]8.85\times 10^{-12}\ F/m[/tex]

[tex]\mu_0[/tex] = Vacuum permeability = [tex]4\pi \times 10^{-7}\ H/m[/tex]

E = Electric field = 57.5 V/m

c = Speed of light = [tex]3\times 10^8\ m/s[/tex]

Magnetic field is given by

[tex]B=\dfrac{E}{c}\\\Rightarrow B=\dfrac{57.5}{3\times 10^8}\\\Rightarrow B=1.9167\times 10^{-7}\ T[/tex]

The magnetic field strength is [tex]1.9167\times 10^{-7}\ T[/tex]

Energy density is given by

[tex]u=\dfrac{1}{2}\epsilon_0E^2+\dfrac{1}{2\mu_0}B^2\\\Rightarrow u=\dfrac{1}{2}\times 8.85\times 10^{-12}\times 57.5^2+\dfrac{1}{2\times 4\pi \times 10^{-7}}(1.9167\times 10^{-7})^2\\\Rightarrow u=2.9247498849\times 10^{-8}\ J/m^3[/tex]

The energy density is [tex]2.9247498849\times 10^{-8}\ J/m^3[/tex]

Power flow per unit area is given by

[tex]\dfrac{P}{A}=uc\\\Rightarrow \dfrac{P}{A}=2.9247498849\times 10^{-8}\times 3\times 10^8\\\Rightarrow \dfrac{P}{A}=8.7742496547\ W/m^2[/tex]

Power flow per unit area is [tex]8.7742496547\ W/m^2[/tex]