Given Vout = 17.33 vpp and R1 = 3 kΩ, find the value of RF required to provide Av = 4.33. (Round your answer to 2 decimal places.) Rf = kΩ. (Round your answer to 2 decimal places.) What is the magnitude of V2? V2 = vpp. What is the phase of V2? Phase = o.

Respuesta :

Answer:

The magnitude of [tex]V_{2}[/tex] is 4 V and phase of input voltage is zero

Explanation:

Given:

Output voltage [tex]V_{out} = 17.33[/tex]

Resistance [tex]R_{1} = 3[/tex] kΩ

Voltage gain [tex]A_{v} = 4.33[/tex]

For finding feedback resistance we use gain equation

Gain equation for non inverting op-amp is given by,

     [tex]A_{v} = 1+\frac{R_{f} }{R_{1} }[/tex]

   [tex]4.33 = 1+ \frac{R_{f} }{3 k }[/tex]

     [tex]R_{f}[/tex] ≅ 10 kΩ

For finding input voltage we use,

   [tex]A_{v} = \frac{V_{out} }{V_{2} }[/tex]

    [tex]V_{2} = \frac{17.33}{4.33}[/tex]

    [tex]V_{2} = 4[/tex] V

The Phase of [tex]V_{2}[/tex] is zero because output voltage phase is 360°

Therefore, the magnitude of [tex]V_{2}[/tex] is 4 V and phase of input voltage is zero