contestada

A constant torque of 18.1 N · m is applied to a grindstone whose moment of inertia is 0.131 kg · m2 . Using energy principles, and neglecting friction, find the angular speed after the grindstone has made 15.2 rev. Answer in units of rad/

Respuesta :

Answer:

162.45 rad/s

Explanation:

We are given that

Torque,[tex]\tau=18.1 N[/tex]

Moment of inertia,[tex]I=0.131 kgm^2[/tex]

Initial angular velocity,[tex]\omega_0=0[/tex]

Angular displacement,[tex]\theta=15.2 rev=15.2(2\pi)[/tex]rad

1 rev=[tex]2\pi[/tex] rad

According to Work energy theorem

Work done=Change in kinetic energy

[tex]\tau\theta=\frac{1}{2}I\omega^2-\frac{1}{2}I\omega^2_0[/tex]

Substitute the values

[tex]18.1\times 15.2(2\pi)=\frac{1}{2}(0.131)\omega^2-0[/tex]

[tex]\omega^2=\frac{18.1\times 15.2(2\pi)\times 2}{0.131}[/tex]

[tex]\omega=\sqrt{\frac{18.1\times 15.2(2\pi)\times 2}{0.131}}[/tex]

[tex]\omega=162.45 rad/s[/tex]