Answer:
162.45 rad/s
Explanation:
We are given that
Torque,[tex]\tau=18.1 N[/tex]
Moment of inertia,[tex]I=0.131 kgm^2[/tex]
Initial angular velocity,[tex]\omega_0=0[/tex]
Angular displacement,[tex]\theta=15.2 rev=15.2(2\pi)[/tex]rad
1 rev=[tex]2\pi[/tex] rad
According to Work energy theorem
Work done=Change in kinetic energy
[tex]\tau\theta=\frac{1}{2}I\omega^2-\frac{1}{2}I\omega^2_0[/tex]
Substitute the values
[tex]18.1\times 15.2(2\pi)=\frac{1}{2}(0.131)\omega^2-0[/tex]
[tex]\omega^2=\frac{18.1\times 15.2(2\pi)\times 2}{0.131}[/tex]
[tex]\omega=\sqrt{\frac{18.1\times 15.2(2\pi)\times 2}{0.131}}[/tex]
[tex]\omega=162.45 rad/s[/tex]