Respuesta :
Answer:
7.74m/s
Explanation:
Mass = 35.9g = 0.0359kg
A = 39.5cm = 0.395m
K = 18.4N/m
At equilibrium position, there's total conservation of energy.
Total energy = kinetic energy + potential energy
Total Energy = K.E + P.E
½KA² = ½mv² + ½kx²
½KA² = ½(mv² + kx²)
KA² = mv² + kx²
Collect like terms
KA² - Kx² = mv²
K(A² - x²) = mv²
V² = k/m (A² - x²)
V = √(K/m (A² - x²) )
note x = ½A
V = √(k/m (A² - (½A)²)
V = √(k/m (A² - A²/4))
Resolve the fraction between A.
V = √(¾. K/m. A² )
V = √(¾ * (18.4/0.0359)*(0.395)²)
V = √(0.75 * 512.53 * 0.156)
V = √(59.966)
V = 7.74m/s
Answer:
The speed of the mass is 7.74 m/s
Explanation:
Given data:
m = 35.9 g = 0.0359 kg
k = 18.4 N/m
A = 39.5 cm = 0.395 m
The displacement in spring is:
[tex]x=\frac{A}{2} =\frac{0.395}{2} =0.1975m[/tex]
The law of conservation of energy:
initial energy = final energy
[tex]\frac{1}{2} kA^{2} =\frac{1}{2} kx^{2} +\frac{1}{2} mv^{2} \\kA^{2}=kx^{2}+mv^{2}\\(18.4*0.395^{2} )=(18.4*0.1975^{2} )+(0.0359v^{2} )\\v=7.74m/s[/tex]