Answer:
a) [tex]\dot V = 1.991\times 10^{-4}\,\frac{m^{3}}{s}[/tex], b) [tex]v = 99.835\,\frac{m}{s}[/tex]
Explanation:
a) The volume flow rate in the line is:
[tex]\dot V = \pi\cdot (6.5\times 10^{-3}\,m)^{2}\cdot (1.5\,\frac{m}{s})[/tex]
[tex]\dot V = 1.991\times 10^{-4}\,\frac{m^{3}}{s}[/tex]
b) The speed of the water leaving one of the holes are:
[tex]v = \frac{1.991\times 10^{-4}\,\frac{m^{3}}{s} }{(12)\cdot \left( \frac{\pi}{4} \right)\cdot (4.6\times 10^{-4}\,m)^{2}}[/tex]
[tex]v = 99.835\,\frac{m}{s}[/tex]