An electromagnetic wave strikes a 2.00-cm2 section of wall perpendicularly. The rms value of the wave's magnetic field is determined to be 5.00 10-4 T. How long does it take for the wave to deliver 1600 J of energy to the wall?

Respuesta :

Answer:t=0.134 s

Explanation:

Given

Area of wall over which wave strikes [tex]A=2\ cm^2[/tex]

Intensity of Electromagnet wave is [tex]I=\frac{c}{\mu _o}B_{rms}^2[/tex]

where [/tex]c[/tex]=speed of light

[tex]\mu _o[/tex]=Permeability of free space

[tex]B_{rms}[/tex]=RMS value of magnetic field

[tex]I=\frac{3\times 10^8}{4\pi \times 10^{-7}}\times (5\times 10^{-4})^2[/tex]

[tex]I=5.96\times 10^7\ W/m^2-s[/tex]

Average power is

[tex]P=I\cdot A[/tex]

[tex]P=5.96\times 10^7\times 2\times 10^{-4}[/tex]

[tex]P=11.92\times 10^{3}[/tex]

[tex]P=11.92\ kW[/tex]

time taken [tex]t=\frac{Energy}{Power}[/tex]

[tex]t=\frac{1600}{11.92\times 10^3}[/tex]

[tex]t=0.134\ s[/tex]