Answer:
The correct answer is (t-s)(x) = 3[tex]x^{2}[/tex] - x + 5; (t+s)(x) = 3[tex]x^{2}[/tex] + x - 5; (t·s)(3) = -54.
Step-by-step explanation:
Function s is defined as the following: s(x) = x - 5.
Function t is defined as the following: t(x) = 3[tex]x^{2}[/tex] .
Assuming that the two functions are defined on the same domain,
(t-s)(x) = t(x) - s(x) = 3[tex]x^{2}[/tex] - x + 5.
(t+s)(x) = t(x) + s(x) = 3[tex]x^{2}[/tex] + x - 5.
(t·s)(x) = t(x) × s(x) = 3[tex]x^{2}[/tex] × (x -5)
(t·s)(3) = t(3) × s(3) = 3 × [tex]3^{2}[/tex] × (3 -5) = - 54
The required functions are given above and the value of the multiplication function at x = 3 is -54.