g An electron enters a region of space containing a uniform 1.63 × 10 − 5 T magnetic field. Its speed is 121 m/s and it enters perpendicularly to the field. Under these conditions, the electron undergoes circular motion. Find the radius r of the electron's path and the frequency f of the motion.

Respuesta :

Answer:

i. The radius 'r' of the electron's path is 4.23 × [tex]10^{-5}[/tex] m.

ii. The frequency 'f' of the motion is 455.44 KHz.

Explanation:

The radius 'r' of the electron's path is called a gyroradius. Gyroradius is the radius of the circular motion of a charged particle in the presence of a uniform magnetic field.

                 r = [tex]\frac{mv}{qB}[/tex]

Where: B is the strength magnetic field, q is the charge, v is its velocity and m is the mass of the particle.

From the question, B = 1.63 × [tex]10^{-5}[/tex]T, v = 121 m/s, Θ = [tex]90^{0}[/tex] (since it enters perpendicularly to the field), q = e  = 1.6 × [tex]10^{-19}[/tex]C and m = 9.11 × [tex]10^{-31}[/tex]Kg.

Thus,

         r = [tex]\frac{mv}{qB}[/tex] ÷ sinΘ

But,  sinΘ =  sin [tex]90^{0}[/tex] = 1.

So that;

          r = [tex]\frac{mv}{qB}[/tex]

            = (9.11 × [tex]10^{-31}[/tex] × 121) ÷ (1.6 × [tex]10^{-19}[/tex]  × 1.63 × [tex]10^{-5}[/tex])

            = 1.10231 × [tex]10^{-28}[/tex]   ÷ 2.608 × [tex]10^{-24}[/tex]

            = 4.2266 × [tex]10^{-5}[/tex]

            = 4.23 × [tex]10^{-5}[/tex] m

The radius 'r' of the electron's path is 4.23 × [tex]10^{-5}[/tex] m.

B. The frequency 'f' of the motion is called cyclotron frequency;

           f = [tex]\frac{qB}{2\pi m}[/tex]

             =  (1.6 × [tex]10^{-19}[/tex]  × 1.63 × [tex]10^{-5}[/tex]) ÷ (2 ×[tex]\frac{22}{7}[/tex] × 9.11 × [tex]10^{-31}[/tex])

             =  2.608 × [tex]10^{-24}[/tex] ÷  5.7263 × [tex]10^{-30}[/tex]

             = 455442.4323

          f  = 455.44 KHz

The frequency 'f' of the motion is 455.44 KHz.

Answer:

(a) 422.2 x 10⁻⁷m

(b) 4.6 x 10⁵ Hz

Explanation:

The magnetic force acting perpendicular to the velocity of the electron will cause a circular motion so that the centripetal force, [tex]F_{c}[/tex], of the electron is equal to the Lorentz's force, [tex]F_{l}[/tex]. i.e

[tex]F_{c}[/tex] = [tex]F_{l}[/tex]         ---------------(i)

Where;

[tex]F_{c}[/tex] = [tex]\frac{mv^2}{r}[/tex]

[tex]F_{l}[/tex] = qvB

Equation (i) then becomes;

[tex]\frac{mv^2}{r}[/tex] = qvB           ------------------(ii)

Where;

m = mass of the electron

v = linear velocity of the electron

r = radius of the electron's path

q = charge of the electron

B = magnetic field.

Make r subject of the formula in equation (ii)

r = [tex]\frac{mv^2}{qvB}[/tex]

r = [tex]\frac{mv}{qB}[/tex]                     -----------(iii)

From the question;

v = 121m/s

B = 1.63 x 10⁻⁵ T

q = 1.6 x 10⁻¹⁹ C             (known constant)

m = 9.1 x 10⁻³¹kg

Substitute these values into equation (iii) as follows;

r = [tex]\frac{9.1*10^{-31} * 121}{1.6*10^{-19}*1.63*10^{-5}}[/tex]

r = 422.2 x 10⁻⁷m

Therefore, the radius of the electron's path is 422.2 x 10⁻⁷m

(ii) The frequency, f, of the motion which is also called the cyclotron frequency - the number of cycles the electron completes around the path every second - is given by;

f = [tex]\frac{v}{2\pi r}[/tex]

Substitute the values of v and r into the equation as follows;

f = [tex]\frac{121}{2\pi (422.2*10^{-7})}[/tex]

Take [tex]\pi[/tex] = 3.142

f = [tex]\frac{121}{2(3.142) (422.2*10^{-7})}[/tex]

f = 4.6 x 10⁵ Hz

Therefore, the frequency of the motion is 4.6 x 10⁵ Hz