This problem asks for Taylor polynomials forf(x) = ln(1 +x) centered at= 0. Show Your work in an organized way.(a) Find the 4th, 5th, and 6th degree Taylor polynomials forf(x) = ln(1 +x) centeredata= 0.(b) Find the nth degree Taylor polynomial forf(x) centered at= 0,written in expanded form.

Respuesta :

Answer:

a) The 4th degree , 5th degree and sixth degree polynomials

[tex]f^{lV} (x) = \frac{(2(-3))}{(1+x)^4} (1)= \frac{((-1)^3(3!))}{(1+x)^4}[/tex]

[tex]f^{V} (x) = \frac{(2(-3)(-4))}{(1+x)^5} =\frac{(-1)^4 (4!)}{(1+x)^5}[/tex]

[tex]f^{V1} (x) = \frac{(-120))}{(1+x)^6} (1) = \frac{(-1)^5 5!}{(1+x)^6}[/tex]

b)The nth degree Taylor polynomial for f(x) centered at x = 0, in expanded form.

[tex]log(1+x) = x - \frac{x^2}{2} +\frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6}+\\.. (-1)^{n-1}\frac{x^n}{n} +..[/tex]

Step-by-step explanation:

Given the polynomial function f(x) = log(1+x) …...(1) centered at x=0

      f(x) = log(1+x) ……(1)

using formula [tex]\frac{d}{dx} logx =\frac{1}{x}[/tex]

Differentiating Equation(1) with respective to 'x' we get

[tex]f^{l} (x) = \frac{1}{1+x} (\frac{d}{dx}(1+x)[/tex]

[tex]f^{l} (x) = \frac{1}{1+x} (1)[/tex]  ….(2)

At x= 0

[tex]f^{l} (0) = \frac{1}{1+0} (1)= 1[/tex]

using formula [tex]\frac{d}{dx} x^{n-1} =nx^{n-1}[/tex]

Again Differentiating Equation(2) with respective to 'x' we get

[tex]f^{l} (x) = \frac{-1}{(1+x)^2} (\frac{d}{dx}((1+x))[/tex]

[tex]f^{ll} (x) = \frac{-1}{(1+x)^2} (1)[/tex]    ….(3)

At x=0

[tex]f^{ll} (0) = \frac{-1}{(1+0)^2} (1)= -1[/tex]

Again Differentiating Equation(3) with respective to 'x' we get

[tex]f^{lll} (x) = \frac{(-1)(-2)}{(1+x)^3} (\frac{d}{dx}((1+x))[/tex]

[tex]f^{lll} (x) = \frac{(-1)(-2)}{(1+x)^3} (1)= \frac{(-1)^2 (2)!}{(1+x)^3}[/tex] ….(4)

At x=0

[tex]f^{lll} (0) = \frac{(-1)(-2)}{(1+0)^3} (1)[/tex]

[tex]f^{lll} (0) = 2[/tex]

Again Differentiating Equation(4) with respective to 'x' we get

[tex]f^{lV} (x) = \frac{(2(-3))}{(1+x)^4} (\frac{d}{dx}((1+x))[/tex]

[tex]f^{lV} (x) = \frac{(2(-3))}{(1+x)^4} (1)= \frac{((-1)^3(3!))}{(1+x)^4}[/tex] ....(5)

[tex]f^{lV} (0) = \frac{(2(-3))}{(1+0)^4}[/tex]

[tex]f^{lV} (0) = -6[/tex]

Again Differentiating Equation(5) with respective to 'x' we get

[tex]f^{V} (x) = \frac{(2(-3)(-4))}{(1+x)^5} (\frac{d}{dx}((1+x))[/tex]

[tex]f^{V} (x) = \frac{(2(-3)(-4))}{(1+x)^5} =\frac{(-1)^4 (4!)}{(1+x)^5}[/tex] .....(6)

At x=0

[tex]f^{V} (x) = 24[/tex]

Again Differentiating Equation(6) with respective to 'x' we get

[tex]f^{V1} (x) = \frac{(2(-3)(-4)(-5))}{(1+x)^6} (\frac{d}{dx}((1+x))[/tex]

[tex]f^{V1} (x) = \frac{(-120))}{(1+x)^6} (1) = \frac{(-1)^5 5!}{(1+x)^6}[/tex]

and so on...

The nth term is

[tex]f^{n} (x) = = \frac{(-1)^{n-1} (n-1)!}{(1+x)^n}[/tex]

Step :-2

Taylors theorem expansion of f(x) is

[tex]f(x) = f(a) + \frac{x}{1!} f^{l}(x) +\frac{(x-a)^2}{2!}f^{ll}(x)+\frac{(x-a)^3}{3!}f^{lll}(x)+\frac{(x-a)^4}{4!}f^{lV}(x)+\frac{(x-a)^5}{5!}f^{V}(x)+\frac{(x-a)^6}{6!}f^{VI}(x)+...….. \frac{(x-a)^n}{n!}f^{n}(x)[/tex]

At x=a =0

[tex]f(x) = f(0) + \frac{x}{1!} f^{l}(0) +\frac{(x)^2}{2!}f^{ll}(0)+\frac{(x)^3}{3!}f^{lll}(0)+\frac{(x)^4}{4!}f^{lV}(0)+\frac{(x)^5}{5!}f^{V}(0)+\frac{(x)^6}{6!}f^{VI}(0)+...….. \frac{(x-0)^n}{n!}f^{n}(0)[/tex]

Substitute  all values , we get

[tex]f(x) = f(0) + \frac{x}{1!} (1) +\frac{(x)^2}{2!}(-1)+\frac{(x)^3}{3!}(2)+\frac{(x)^4}{4!}(-6)+\frac{(x)^5}{5!}(24)+\frac{(x)^6}{6!}(-120)+...….. \frac{(x-0)^n}{n!}f^{n}(0)[/tex]

On simplification we get

[tex]log(1+x) = x - \frac{x^2}{2} +\frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6}+\\.. (-1)^{n-1}\frac{x^n}{n} +..[/tex]