An electron passes through a point 2.83 cm 2.83 cm from a long straight wire as it moves at 35.5 % 35.5% of the speed of light perpendicularly toward the wire. At that moment a switch is flipped, causing a current of 17.7 A 17.7 A to flow in the wire. Find the magnitude of the electron's acceleration a a at that moment.

Respuesta :

Answer:

The magnitude of electron acceleration is [tex]2.34 \times 10^{15}[/tex] [tex]\frac{m}{s^{2} }[/tex]

Explanation:

Given:

Distance from the wire to the field point [tex]r = 2.83 \times 10^{-2}[/tex] m

Speed of electron [tex]v = 35.5 \%c[/tex]

Current [tex]I = 17.7[/tex] A

For finding the acceleration,

First find the magnetic field due to wire,

  [tex]B = \frac{\mu _{o}I }{2\pi r }[/tex]

Where [tex]\mu_{o} = 4\pi \times 10^{-7}[/tex]

  [tex]B = \frac{4\pi \times 10^{-7} \times 17.7 }{2\pi (2.83 \times 10^{-2} ) }[/tex]

  [tex]B = 12.50 \times 10^{-5}[/tex] T

The magnetic force exerted on the electron passing through straight wire,

  [tex]F = qvB[/tex]  

  [tex]F = 1.6 \times 10^{-19} \times 0.355 \times 3 \times 10^{8} \times 12.50 \times 10^{-5}[/tex]

  [tex]F = 21.3 \times 10^{-16}[/tex] N

From the newton's second law

  [tex]F = ma[/tex]

Where [tex]m =[/tex] mass of electron [tex]= 9.1 \times 10^{-31}[/tex] kg

So acceleration is given by,

   [tex]a = \frac{F}{m}[/tex]

   [tex]a = \frac{21.3 \times 10^{-16} }{9.1 \times 10^{-31} }[/tex]

   [tex]a = 2.34 \times 10^{15}[/tex] [tex]\frac{m}{s^{2} }[/tex]

Therefore, the magnitude of electron acceleration is [tex]2.34 \times 10^{15}[/tex] [tex]\frac{m}{s^{2} }[/tex]