Compare the wavelengths of an electron (mass = 9.11 × 10−31 kg) and a proton (mass = 1.67 × 10−27 kg), each having (a) a speed of 6.55 × 106 m/s and (b) a kinetic energy of 7.89 × 10−15 J. Enter your answers in scientific notation.

Respuesta :

Answer:

Part A:

The proton has a smaller wavelength than the electron.  

[tex]\lambda_{proton} = 6.05x10^{-14}m[/tex] < [tex]\lambda_{electron} = 1.10x10^{-10}m[/tex]

Part B:

The proton has a smaller wavelength than the electron.

[tex]\lambda_{proton} = 1.29x10^{-13}m[/tex] < [tex]\lambda_{electron} = 5.525x10^{-12}m[/tex]

Explanation:

The wavelength of each particle can be determined by means of the De Broglie equation.

[tex]\lambda = \frac{h}{p}[/tex] (1)

Where h is the Planck's constant and p is the momentum.

[tex]\lambda = \frac{h}{mv}[/tex] (2)

Part A

Case for the electron:

[tex]\lambda = \frac{6.624x10^{-34} J.s}{(9.11x10^{-31}Kg)(6.55x10^{6}m/s)}[/tex]

But [tex]J = Kg.m^{2}/s^{2}[/tex]

[tex]\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(9.11x10^{-31}Kg)(6.55x10^{6}m/s)}[/tex]

[tex]\lambda = 1.10x10^{-10}m[/tex]

Case for the proton:

[tex]\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(1.67x10^{-27}Kg)(6.55x10^{6}m/s)}[/tex]

[tex]\lambda = 6.05x10^{-14}m[/tex]

Hence, the proton has a smaller wavelength than the electron.  

Part B

For part b, the wavelength of the electron and proton for that energy will be determined.

First, it is necessary to find the velocity associated to that kinetic energy:

[tex]KE = \frac{1}{2}mv^{2}[/tex]

[tex]2KE = mv^{2}[/tex]

[tex]v^{2} = \frac{2KE}{m}[/tex]

[tex]v = \sqrt{\frac{2KE}{m}}[/tex]  (3)

Case for the electron:

[tex]v = \sqrt{\frac{2(7.89x10^{-15}J)}{9.11x10^{-31}Kg}}[/tex]

but [tex]1J = kg \cdot m^{2}/s^{2}[/tex]

[tex]v = \sqrt{\frac{2(7.89x10^{-15}kg \cdot m^{2}/s^{2})}{9.11x10^{-31}Kg}}[/tex]

[tex]v = 1.316x10^{8}m/s[/tex]

Then, equation 2 can be used:

[tex]\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(9.11x10^{-31}Kg)(1.316x10^{8}m/s)}[/tex]    

[tex]\lambda = 5.525x10^{-12}m[/tex]

Case for the proton :

[tex]v = \sqrt{\frac{2(7.89x10^{-15}J)}{1.67x10^{-27}Kg}}[/tex]

But [tex]1J = kg \cdot m^{2}/s^{2}[/tex]

[tex]v = \sqrt{\frac{2(7.89x10^{-15}kg \cdot m^{2}/s^{2})}{1.67x10^{-27}Kg}}[/tex]

[tex]v = 3.07x10^{6}m/s[/tex]

Then, equation 2 can be used:

[tex]\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(1.67x10^{-27}Kg)(3.07x10^{6}m/s)}[/tex]

[tex]\lambda = 1.29x10^{-13}m[/tex]    

Hence, the proton has a smaller wavelength than the electron.