Respuesta :

Given:

It is given that PR is tangent to clrcle Q at R and PS is tangent to circle Q at S.

We need to determine the measure of ∠P

Measure of ∠P:

Since, the angles P and Q are circumscribed angles. And the angles add up to 180°

Thus, we have;

[tex]\angle P+\angle Q=180^{\circ}[/tex]

Substituting [tex]\angle P=x^{\circ}[/tex] and [tex]\angle Q=2x^{\circ}[/tex] in the above formula, we get;

[tex]x^{\circ}+2x^{\circ}=180^{\circ}[/tex]

       [tex]3x^{\circ}=180^{\circ}[/tex]

           [tex]x=60^{\circ}[/tex]

Thus, the value of x is 60°

The measure of ∠P = x = 60°

Hence, the measure of ∠P is 60°