Answer:
The pressure difference between two pipe is [tex]1.01 \times 10^{4}[/tex] Pa
Explanation:
Density [tex]\rho = 1165[/tex] [tex]\frac{kg}{m^{3} }[/tex]
Speed in one pipe [tex]v_{1} = 4.53[/tex] [tex]\frac{m}{s}[/tex]
Speed in second pipe [tex]v_{2} = 1.77[/tex] [tex]\frac{m}{s}[/tex]
According to the bernoulli equation,
The pressure difference is given by,
[tex]P = \frac{1}{2} \rho v^{2}[/tex]
[tex]P_{2} - P_{1} = \frac{1}{2} \rho (v_{1}^{2} - v_{2}^{2} )[/tex]
[tex]P_{2} - P_{1} = \frac{1}{2} \times 1165 \times[ (4.53)^{2}- (1.77)^{2}][/tex]
[tex]P_{2} - P_{1} = 10128.51[/tex]
[tex]P_{2} - P_{1} = 1.01 \times 10^{4}[/tex] Pa
Therefore, the pressure difference between two pipe is [tex]1.01 \times 10^{4}[/tex] Pa