Respuesta :

Given:

Let x and y denote the supplementary angles.

Given that an angle measures 102.8° more than the measure of its supplementary angles.

This can be written in expression as,

[tex]y=102.8^{\circ}+x[/tex]

Measure of two angles:

Since, the two angles are supplementary and the supplementary angles add up to 180°

Thus, we have;

[tex]x+y=180^{\circ}[/tex]

Substituting [tex]y=102.8^{\circ}+x[/tex] in the above formula, we get;

[tex]x+102.8^{\circ}+x=180^{\circ}[/tex]

    [tex]2x+102.8^{\circ}=180^{\circ}[/tex]

                  [tex]2x=77.2^{\circ}[/tex]

                    [tex]x=38.6^{\circ}[/tex]

Thus, the measure of one angle is 38.6°

Substituting [tex]x=38.6^{\circ}[/tex] in the equation [tex]y=102.8^{\circ}+x[/tex], we get;

[tex]y=102.8^{\circ}+38.6^{\circ}[/tex]

[tex]y=141.4^{\circ}[/tex]

Thus, the measure of the other angle is 141.4°

Hence, the measure of the two angles are 38.6° and 141.4°