Professor Elderman has given the same multiple-choice final exam in his Principles of Microeconomics class for many years. After examining his records from the past 10 years, he finds that the scores have a mean of 76 and a standard deviation of 12. What is the probability that a class of 15 students will have a class average greater than 70 on Professor Elderman's final exam?

Respuesta :

Answer:

97.38% probability that a class of 15 students will have a class average greater than 70 on Professor Elderman's final exam

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this problem, we have that:

[tex]\mu = 76, \sigma = 12, n = 15, s = \frac{12}{\sqrt{15}} = 3.0984[/tex]

What is the probability that a class of 15 students will have a class average greater than 70 on Professor Elderman's final exam?

This is 1 subtracted by the pvalue of Z when X = 70. So

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

By the Central Limit Theorem

[tex]Z = \frac{X - \mu}{s}[/tex]

[tex]Z = \frac{70 - 76}{3.0984}[/tex]

[tex]Z = -1.94[/tex]

[tex]Z = -1.94[/tex] has a pvalue of 0.0262

1 - 0.0262 = 0.9738

97.38% probability that a class of 15 students will have a class average greater than 70 on Professor Elderman's final exam