A radioactive mass emits particles according to a Poisson process at a mean rate of 2 per second. Let T be the waiting time, in seconds, between emissions. a. What is the mean waiting time? b. What is the median waiting time? c. Find P(T > 2). d. Find P(T < 0.1).

Respuesta :

Answer with Step-by-step explanation:

We are given that

[tex]\lambda=2[/tex]

a.Mean waiting time,[tex]E(T)=\frac{1}{\lambda}[/tex]

[tex]E(T)=\frac{1}{2}=0.5 s[/tex]

b.Median waiting time,[tex]P(T<t_{md})=E(T)=0.5[/tex]

[tex]1-e^{-\lambda t_{md}}=0.5[/tex]

Where [tex]P(T<t)=1-e^{-\lambda t}[/tex]

[tex]e^{-\lambda t_{md}}=1-0.5=0.5[/tex]

[tex]e^{-2t_{md}}=0.5[/tex]

[tex]-2t_{md}=ln(0.5)[/tex]

[tex]-2t_{md}=-0.693[/tex]

[tex]t_{md}=\frac{0.693}{2}=0.3465 s[/tex]

c.P(T>2)=[tex]1-P(T< 2)=1-(1-e^{-2\times 2})[/tex]

[tex]P(T>2)=e^{-4}=0.018[/tex]

d.[tex]P(T<0.1)=1-e^{-2\times 0.1}=1-e^{-0.2}=0.181[/tex]