A farmer wants to fence a rectangular pasture using a river as one side. The pasture must contain 180,000 square meters of space for the herd to frolic. What is the least amount of fencing required to enclose such a pasture?

Respuesta :

Answer:

1200 m

Step-by-step explanation:

We are given that

Area of pasture,A=180000 square meter

We have to find the least amount of fencing required to enclose such a pasture.

Let length of pasture,=x

Width of pasture,b=y

Area of pasture=[tex]l\times b=xy[/tex]

[tex]xy=180000[/tex]

[tex]y=\frac{180000}{x}[/tex]

Fencing required=2x+y

[tex]P=2x+\frac{180000}{x}[/tex]

Differentiate w.r.t x

[tex]\frac{dP}{dx}=2-\frac{180000}{x^2}[/tex]

[tex]\frac{dP}{dx}=0[/tex]

[tex]2-\frac{180000}{x^2}=0[/tex]

[tex]\frac{180000}{x^2}=2[/tex]

[tex]x^2=\frac{180000}{2}=90000[/tex]

[tex]x=\sqrt{900000}=300[/tex]m

It is always positive because length cannot be negative.

[tex]y=\frac{180000}{300}=600[/tex]m

Again differentiate w.r.t x

[tex]\frac{d^2P}{dx^2}=\frac{360000}{x^3}[/tex]

Substitute x=300

[tex]\frac{d^2P}{dx^2}=\frac{360000}{27000000}=0.013>0[/tex]

The fence is minimum at x=300

Therefore, fencing required  to enclose such a pasture

[tex]P=2x+y=2(300)+600=1200 m[/tex]