An electric turntable 0.730 mm in diameter is rotating about a fixed axis with an initial angular velocity of 0.240 rev/srev/s and a constant angular acceleration of 0.906 rev/s2rev/s2.(a) Compute the angular velocity of the turntable after 0.200 s. (b) Through how many revolutions has the turntable spun in this time interval? (c) What is the tangential speed of a point on the rim of the turn-table at t = 0.200 s? (d) What is the magnitude of the resultant acceleration of a point on the rim at t = 0.200 s?

Respuesta :

Answer:

a) [tex]\omega = 0.421\,\frac{rev}{s}[/tex], b) [tex]\Delta \theta = 0.066\,rev[/tex], c) [tex]v = 0.966\,\frac{mm}{s}[/tex], d) [tex]a = 3.293\,\frac{mm}{s^{2}}[/tex]

Explanation:

a) The angular velocity of the turntable after [tex]0.200\,s[/tex].

[tex]\omega = \omega_{o} + \alpha\cdot \Delta t[/tex]

[tex]\omega = 0.240\,\frac{rev}{s} + (0.906\,\frac{rev}{s^{2}} )\cdot (0.2\,s)[/tex]

[tex]\omega = 0.421\,\frac{rev}{s}[/tex]

b) The change in angular position is:

[tex]\Delta \theta = \omega_{o}\cdot t + \frac{1}{2} \cdot \alpha \cdot t^{2}[/tex]

[tex]\Delta \theta = (0.240\,\frac{rev}{s} )\cdot (0.2\,s) + \frac{1}{2}\cdot (0.906\,\frac{rev}{s^{2}} )\cdot (0.2\,s)^{2}[/tex]

[tex]\Delta \theta = 0.066\,rev[/tex]

c) The tangential speed of a point on the rim of the turn-table:

[tex]v = r\cdot \omega[/tex]

[tex]v = (0.365\times 10^{-3}\,m)\cdot (0.421\,\frac{rev}{s} )\cdot (\frac{2\pi\,rad}{1\,rev} )[/tex]

[tex]v = 9.655\times 10^{-4}\,\frac{m}{s}[/tex]

[tex]v = 0.966\,\frac{mm}{s}[/tex]

d) The tangential and normal components of the acceleration of the turn-table:

[tex]a_{t} = (0.365\times 10^{-3}\,m)\cdot (0.906\,\frac{rev}{s^{2}})\cdot (\frac{2\pi\,rad}{1\,rev} )[/tex]

[tex]a_{t} = 2.078\times 10^{-3}\,\frac{m}{s^{2}}[/tex]

[tex]a_{t} = 2.078\,\frac{mm}{s}[/tex]

[tex]a_{n} = (0.365\times 10^{-3}\,m)\cdot \left[(0.421\,\frac{rev}{s} )\cdot (\frac{2\pi\,rad}{1\,rev} )\right]^{2}[/tex]

[tex]a_{n} = 2.554\times 10^{-3}\,\frac{m}{s^{2}}[/tex]

[tex]a_{n} = 2.554\,\frac{mm}{s^{2}}[/tex]

The magnitude of the resultant acceleration is:

[tex]a = \sqrt{(2.078\,\frac{mm}{s} )^{2}+(2.554\,\frac{mm}{s} )^{2}}[/tex]

[tex]a = 3.293\,\frac{mm}{s^{2}}[/tex]

For the electric turntable 0.730 mm in diameter that is rotating with an initial angular velocity of 0.240 rev/s and a constant angular acceleration of 0.906 rev/s², we have:

a) The angular velocity of the turntable after 0.200 s is 2.65 rad/s.

b) The number of revolutions in 0.200 s is 0.066.

c) The tangential speed of a point on the rim of the turntable at a time of 0.200 s is 9.67x10⁻⁴ m/s.

d) The magnitude of the resultant acceleration of a point on the rim at t = 0.200 s is 3.30x10⁻³ m/s².  

a) We can calculate the angular velocity with the following equation:

[tex] \omega_{f} = \omega_{i} + \alpha t [/tex]   (1)

Where:

[tex] \omega_{f} [/tex]: is the final angular velocity =?

[tex] \omega_{i} [/tex]: is the initial angular velocity = 0.240 rev/s

α: is the angular acceleration = 0.906 rev/s²

t: is the time = 0.200 s

By entering the above values into equation (1), we have:

[tex] \omega_{f} = 0.240 \frac{rev}{s}*\frac{2\pi rad}{1 rev} + 0.906 \frac{rev}{s^{2}}*\frac{2\pi rad}{1 rev}*0.200 s = 2.65 rad/s [/tex]  

Hence, the angular velocity of the turntable after 0.200 s is 2.65 rad/s.

b) We can find the number of revolutions as follows

[tex] \theta_{f} = \theta_{i} + \omega_{i}*t + \frac{1}{2}\alpha t^{2} [/tex]   (2)

Where:

[tex] \theta_{f} [/tex]: is the final displacement =?

[tex] \theta_{i} [/tex]: is the initial displacement = 0

Then, the number of revolutions is (eq 2):

[tex] \theta_{f} = 0 + 0.240 \frac{rev}{s}*0.200 s + \frac{1}{2}0.906 \frac{rev}{s^{2}}*(0.200 s)^{2} = 0.066 rev[/tex]

c) The tangential speed is equal to:

[tex] v = \omega_{f}*r [/tex]   (3)

Where:

r: is the radius of the turntable = d/2 = 0.730/2 mm = 0.365 mm

Hence, the tangential speed is (eq 3):

[tex] v = 2.65 rad/s*0.365 \cdot 10^{-3} m = 9.67 \cdot 10^{-4} m/s [/tex]

d) The magnitude of the resultant acceleration is equal to the sum of the centripetal and tangential acceleration:

[tex] a_{r} = \sqrt{a_{t}^{2} + a_{c}^{2}} [/tex]   (4)

Where:

[tex]a_{c}[/tex]: is the centripetal acceleration = [tex]\omega_{f}^{2}*r[/tex]

[tex]a_{t}[/tex]: is the tangential acceleration = α*r

So, the resultant acceleration is (eq 4):

[tex] a_{r} = \sqrt{(\alpha*r)^{2} + (\omega_{f}^{2}*r)^{2}} [/tex]

[tex] a_{r} = \sqrt{(0.906 \frac{rev}{s^{2}}*\frac{2\pi rad}{1 rev}*0.365 \cdot 10^{-3} m)^{2} + ((2.65 rad/s)^{2}*0.365 \cdot 10^{-3} m)^{2}} = 3.30 \cdot 10^{-3} m/s^{2} [/tex]

Therefore, the magnitude of the resultant acceleration is 3.30x10⁻³ m/s².

Learn more about circular motion here:

  • https://brainly.com/question/2562955?referrer=searchResults
  • https://brainly.com/question/17689540?referrer=searchResults

I hope it helps you!